Pre-Lie Algebra
   HOME
*





Pre-Lie Algebra
In mathematics, a pre-Lie algebra is an algebraic structure on a vector space that describes some properties of objects such as Tree (graph theory), rooted trees and vector fields on affine space. The notion of pre-Lie algebra has been introduced by Murray Gerstenhaber in his work on Deformation theory, deformations of algebras. Pre-Lie algebras have been considered under some other names, among which one can cite left-symmetric algebras, right-symmetric algebras or Vinberg algebras. Definition A pre-Lie algebra (V,\triangleleft) is a vector space V with a bilinear map \triangleleft : V \otimes V \to V, satisfying the relation (x \triangleleft y) \triangleleft z - x \triangleleft (y \triangleleft z) = (x \triangleleft z) \triangleleft y - x \triangleleft (z \triangleleft y). This identity can be seen as the invariance of the associator (x,y,z) = (x \triangleleft y) \triangleleft z - x \triangleleft (y \triangleleft z) under the exchange of the two variables y and z. Every ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Associative Algebra
In mathematics, an associative algebra ''A'' is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field ''K''. The addition and multiplication operations together give ''A'' the structure of a ring; the addition and scalar multiplication operations together give ''A'' the structure of a vector space over ''K''. In this article we will also use the term ''K''-algebra to mean an associative algebra over the field ''K''. A standard first example of a ''K''-algebra is a ring of square matrices over a field ''K'', with the usual matrix multiplication. A commutative algebra is an associative algebra that has a commutative multiplication, or, equivalently, an associative algebra that is also a commutative ring. In this article associative algebras are assumed to have a multiplicative identity, denoted 1; they are sometimes called unital associative algebras for clarification. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lie Groups
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction). Combining these two ideas, one obtains a continuous group where multiplying points and their inverses are continuous. If the multiplication and taking of inverses are smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the rotational symmetry in three dimensions (given by the special orthogonal group \text(3)). Lie groups are widely used in many parts of modern mathematics and physics. Lie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International Mathematics Research Notices
The ''International Mathematics Research Notices'' is a peer-reviewed mathematics journal. Originally published by Duke University Press and Hindawi Publishing Corporation, it is now published by Oxford University Press.Worldcat database entry
retrieved 2015-02-26. The Executive Editor is Zeev Rudnick (). According to the ''

Free Object
In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set ''A'' can be thought of as being a "generic" algebraic structure over ''A'': the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices. The concept is a part of universal algebra, in the sense that it relates to all types of algebraic structure (with finitary operations). It also has a formulation in terms of category theory, although this is in yet more abstract terms. Definition Free objects are the direct generalization to categories of the notion of basis in a vector space. A linear function between vector spaces is entirely determined by its values on a basis of the vector space The following definition translates this to any category. A concrete category is a category that is equipped with a faithf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Free Vector Space
Free may refer to: Concept * Freedom, having the ability to do something, without having to obey anyone/anything * Freethought, a position that beliefs should be formed only on the basis of logic, reason, and empiricism * Emancipate, to procure political rights, as for a disenfranchised group * Free will, control exercised by rational agents over their actions and decisions * Free of charge, also known as gratis. See Gratis vs libre. Computing * Free (programming), a function that releases dynamically allocated memory for reuse * Free format, a file format which can be used without restrictions * Free software, software usable and distributable with few restrictions and no payment * Freeware, a broader class of software available at no cost Mathematics * Free object ** Free abelian group ** Free algebra ** Free group ** Free module ** Free semigroup * Free variable People * Free (surname) * Free (rapper) (born 1968), or Free Marie, American rapper and media personalit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rooted Tree
In graph theory, a tree is an undirected graph in which any two vertices are connected by ''exactly one'' path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by ''at most one'' path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. A polytreeSee . (or directed tree or oriented treeSee .See . or singly connected networkSee .) is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. The various kinds of data structures referred to as trees in computer science have underlying graphs that are trees in graph theory, although such data structures are generally rooted trees. A rooted tree may be directed, called a directed rooted tree, either making all its edges point away from the root—in which case it is called an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Associator
In abstract algebra, the term associator is used in different ways as a measure of the non-associativity of an algebraic structure. Associators are commonly studied as triple systems. Ring theory For a non-associative ring or algebra R, the associator is the multilinear map cdot,\cdot,\cdot: R \times R \times R \to R given by : ,y,z= (xy)z - x(yz). Just as the commutator : , y= xy - yx measures the degree of non-commutativity, the associator measures the degree of non-associativity of R. For an associative ring or algebra the associator is identically zero. The associator in any ring obeys the identity :w ,y,z+ ,x,y = x,y,z- ,xy,z+ ,x,yz The associator is alternating precisely when R is an alternative ring. The associator is symmetric in its two rightmost arguments when R is a pre-Lie algebra. The nucleus is the set of elements that associate with all others: that is, the ''n'' in ''R'' such that : ,R,R= ,n,R= ,R,n= \ \ . The nucleus is an associative subring of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Structure
In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of identities, known as axioms, that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called ''scalar multiplication'' between elements of the field (called '' scalars''), and elements of the vector space (called '' vectors''). Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structures of the same type (homomor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Deformation Theory
In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution ''P'' of a problem to slightly different solutions ''P''ε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces. Some characteristic phenomena are: the derivation of first-order equations by treating the ε quantities as having negligible squares; the possibility of ''isolated solutions'', in that varying a solution may not be possible, ''or'' does not bring anything new; and the question of whether the infinitesimal constraints actually 'integrate', so that their solution does provide small variations. In some form these considerations have a history of centuries in mathematics, but also in physics and engineering. For example, in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Murray Gerstenhaber
Murray Gerstenhaber (born June 5, 1927) is an American mathematician and professor of mathematics at the University of Pennsylvania, best known for his contributions to theoretical physics with his discovery of Gerstenhaber algebra. He is also a lawyer and a lecturer in law at the University of Pennsylvania Law School. Early life and education Gerstenhaber was born in Brooklyn, New York, to Pauline (née Rosenzweig; who was born in Romania; died in 1978) and Joseph Gerstenhaber (who was born in 1892 in Romania; died in 1975). His father was trained as a jeweler, "but being unable to find work in this line he ookemployment in a factory making airplane precision instruments”. As to his mother, in 2015 he noted: "For someone born into a minority family without means, I have been exceedingly lucky. The problems faced by talented but disadvantaged children today are preventing many who could be important contributors to the sciences, arts, and society in general, from achieving their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]