Planting Density
   HOME
*



picture info

Planting Density
Plant density is the number of individual plants present per unit of ground area. It is most easily interpreted in the case of monospecific stands, where all plants belong to the same species and have germinated at the same time. However, it could also indicate the number of individual plants found at a given location. Definition and concepts Plant density is defined as the number of plants present per unit area of ground. In nature, plant densities can be especially high when seeds present in a seed bank germinate after winter, or in a forest understory after a tree fall opens a gap in the canopy. Due to competition for light, nutrients and water, individual plants will not be able to take up all resources that are required for optimal growth. This indicates that plant density not only depends on the space available to grow but it is also determined by the amount of resources available. Especially in the case of light, smaller plants will take up fewer resources than bigger plan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Soil Seed Bank
The soil seed bank is the natural storage of seeds, often dormant, within the soil of most ecosystems. The study of soil seed banks started in 1859 when Charles Darwin observed the emergence of seedlings using soil samples from the bottom of a lake. The first scientific paper on the subject was published in 1882 and reported on the occurrence of seeds at different soil depths. Weed seed banks have been studied intensely in agricultural science because of their important economic impacts; other fields interested in soil seed banks include forest regeneration and restoration ecology. Background Many taxa have been classified according to the longevity of their seeds in the soil seed bank. Seeds of ''transient'' species remain viable in the soil seed bank only to the next opportunity to germinate, while seeds of ''persistent'' species can survive longer than the next opportunity—often much longer than one year. Species with seeds that remain viable in the soil longer than f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Agriculture
Agriculture or farming is the practice of cultivating plants and livestock. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people to live in cities. The history of agriculture began thousands of years ago. After gathering wild grains beginning at least 105,000 years ago, nascent farmers began to plant them around 11,500 years ago. Sheep, goats, pigs and cattle were domesticated over 10,000 years ago. Plants were independently cultivated in at least 11 regions of the world. Industrial agriculture based on large-scale monoculture in the twentieth century came to dominate agricultural output, though about 2 billion people still depended on subsistence agriculture. The major agricultural products can be broadly grouped into foods, fibers, fuels, and raw materials (such as rubber). Food classes include cereals (grains), vegetables, fruits, cooking oils, meat, milk, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intraspecific Competition
Intraspecific competition is an interaction in population ecology, whereby members of the same species compete for limited resources. This leads to a reduction in fitness for both individuals, but the more fit individual survives and is able to reproduce. By contrast, interspecific competition occurs when members of different species compete for a shared resource. Members of the same species have rather similar requirements for resources, whereas different species have a smaller contested resource overlap, resulting in intraspecific competition generally being a stronger force than interspecific competition. Individuals can compete for food, water, space, light, mates, or any other resource which is required for survival or reproduction. The resource must be limited for competition to occur; if every member of the species can obtain a sufficient amount of every resource then individuals do not compete and the population grows exponentially. Prolonged exponential growth is rare ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Seed
A seed is an embryonic plant enclosed in a protective outer covering, along with a food reserve. The formation of the seed is a part of the process of reproduction in seed plants, the spermatophytes, including the gymnosperm and angiosperm plants. Seeds are the product of the ripened ovule, after the embryo sac is fertilized by sperm from pollen, forming a zygote. The embryo within a seed develops from the zygote, and grows within the mother plant to a certain size before growth is halted. The seed coat arises from the integuments of the ovule. Seeds have been an important development in the reproduction and success of vegetable gymnosperm and angiosperm plants, relative to more primitive plants such as ferns, mosses and liverworts, which do not have seeds and use water-dependent means to propagate themselves. Seed plants now dominate biological niches on land, from forests to grasslands both in hot and cold climates. The term "seed" also has a general me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Biomass Allocation
Biomass allocation is a concept in plant biology which indicates the relative proportion of plant biomass present in the different organs of a plant. It can also be used for whole plant communities. Rationale Different organs of plants serve different functions. Leaves generally intercept light and fix carbon, roots take up water and nutrients, and stems and petioles display the leaves in a favourable position and transport various compounds within the plant. Depending on environmental conditions, plants may change their investment scheme, to make plants with relatively bigger root systems, or more leaves. This balance has been suggested to be a ‘functional equilibrium’, with plants that experience low water or nutrient supply investing more in roots, and plants growing under low light or CO2 conditions investing more in leaves or stems. Alternatively, it is also known as the 'balanced growth hypothesis', or the 'optimal partitioning theory'. Next to environmentally-induced cha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Photosynthetic Capacity
Photosynthetic capacity (Amax) is a measure of the maximum rate at which leaves are able to fix carbon during photosynthesis. It is typically measured as the amount of carbon dioxide that is fixed per metre squared per second, for example as μmol m−2 sec−1. Limitations Photosynthetic capacity is limited by carboxylation capacity and electron transport capacity. For example, in high carbon dioxide concentrations or in low light, the plant is not able to regenerate ribulose-1,5-bisphosphate fast enough (also known RUBP, the acceptor molecule in photosynthetic carbon reduction). So in this case, photosynthetic capacity is limited by electron transport of the light reaction, which generates the NADPH and ATP required for the PCR (Calvin) Cycle, and regeneration of RUBP. On the other hand, in low carbon dioxide concentrations, the capacity of the plant to perform carboxylation (adding carbon dioxide to Rubisco Ribulose-1,5-bisphosphate carboxylase-oxygenase, commonly known by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transpiration
Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers. Water is necessary for plants but only a small amount of water taken up by the roots is used for growth and metabolism. The remaining 97–99.5% is lost by transpiration and guttation. Leaf surfaces are dotted with pores called stomata (singular "stoma"), and in most plants they are more numerous on the undersides of the foliage. The stomata are bordered by guard cells and their stomatal accessory cells (together known as stomatal complex) that open and close the pore. Transpiration occurs through the stomatal apertures, and can be thought of as a necessary "cost" associated with the opening of the stomata to allow the diffusion of carbon dioxide gas from the air for photosynthesis. Transpiration also cools plants, changes osmotic pressure of cells, and enables mass flow of mineral nutrients and water from roots to shoots. Two major factors i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Photosynthesis
Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in carbohydrate molecules, such as sugars and starches, which are synthesized from carbon dioxide and water – hence the name ''photosynthesis'', from the Greek ''phōs'' (), "light", and ''synthesis'' (), "putting together". Most plants, algae, and cyanobacteria perform photosynthesis; such organisms are called photoautotrophs. Photosynthesis is largely responsible for producing and maintaining the oxygen content of the Earth's atmosphere, and supplies most of the energy necessary for life on Earth. Although photosynthesis is performed differently by different species, the process always begins when energy from light is absorbed by proteins called reaction centers that contain green chlorophyll (and other colored) pigments/chromoph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Branches
A branch, sometimes called a ramus in botany, is a woody structural member connected to the central trunk of a tree (or sometimes a shrub). Large branches are known as boughs and small branches are known as twigs. The term ''twig'' usually refers to a terminus, while ''bough'' refers only to branches coming directly from the trunk. Due to a broad range of species of trees, branches and twigs can be found in many different shapes and sizes. While branches can be nearly horizontal, vertical, or diagonal, the majority of trees have upwardly diagonal branches. A number of mathematical properties are associated with tree branchings; they are natural examples of fractal patterns in nature, and, as observed by Leonardo da Vinci, their cross-sectional areas closely follow the da Vinci branching rule. Terminology Because of the enormous quantity of branches in the world, there are numerous names in English alone for them. In general however, unspecific words for a branch (such as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tiller (botany)
A tiller is a shoot that arises from the base of a grass plant. The term refers to all shoots that grow after the initial parent shoot grows from a seed. Tillers are segmented, each segment possessing its own two-part leaf. They are involved in vegetative propagation and, in some cases, also seed production. "Tillering" refers to the production of side shoots and is a property possessed by many species in the grass family. This enables them to produce multiple stems (tillers) starting from the initial single seedling. This ensures the formation of dense tufts and multiple seed heads. Tillering rates are heavily influenced by soil water quantity. When soil moisture is low, grasses tend to develop more sparse and deep root systems (as opposed to dense, lateral systems). Thus, in dry soils, tillering is inhibited: the lateral nature of tillering is not supported by lateral root growth. See also *Crown (botany) The crown of a plant refers to the total of an individual plant's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Leaf Mass Per Area
Specific leaf area (SLA) is the ratio of leaf area to leaf dry mass. The inverse of SLA is Leaf Mass per Area (LMA). Rationale Specific leaf area is a ratio indicating how much leaf area a plant builds with a given amount of leaf biomass: SLA \ = \ \frac where A is the area of a given leaf or all leaves of a plant, and ML is the dry mass of those leaves. Typical units are m2.kg−1 or mm2.mg−1. Leaf mass per area (LMA) is its inverse and can mathematically be decomposed in two component variables, leaf thickness (LTh) and leaf density (LD): LMA \ = \ \frac \ = LTh.LD Typical units are g.m−2 for LMA, µm for LTh and g.ml−1 for LD. Both SLA and LMA are frequently used in plant ecology and biology. SLA is one of the components in plant growth analysis, and mathematically scales positively and linearly with the relative growth rate of a plant. LMA mathematically scales positively with the investments plants make per unit leaf area (amount of protein and cell wall; cell numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]