Peano Existence Theorem
   HOME
*





Peano Existence Theorem
In mathematics, specifically in the study of ordinary differential equations, the Peano existence theorem, Peano theorem or Cauchy–Peano theorem, named after Giuseppe Peano and Augustin-Louis Cauchy, is a fundamental theorem which guarantees the existence of solutions to certain initial value problems. History Peano first published the theorem in 1886 with an incorrect proof. In 1890 he published a new correct proof using successive approximations. Theorem Let D be an open subset of \mathbb\times\mathbb with f\colon D \to \mathbb a continuous function and y'(x) = f\left(x,y(x)\right) a continuous, explicit first-order differential equation defined on ''D'', then every initial value problem y\left(x_0\right) = y_0 for ''f'' with (x_0, y_0) \in D has a local solution z\colon I \to \mathbb where I is a neighbourhood of x_0 in \mathbb, such that z'(x) = f\left(x,z(x)\right) for all x \in I . The solution need not be unique: one and the same initial value (x_0,y_0) may give ris ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniform Convergence
In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions (f_n) converges uniformly to a limiting function f on a set E if, given any arbitrarily small positive number \epsilon, a number N can be found such that each of the functions f_N, f_,f_,\ldots differs from f by no more than \epsilon ''at every point'' x ''in'' E. Described in an informal way, if f_n converges to f uniformly, then the rate at which f_n(x) approaches f(x) is "uniform" throughout its domain in the following sense: in order to guarantee that f_n(x) falls within a certain distance \epsilon of f(x), we do not need to know the value of x\in E in question — there can be found a single value of N=N(\epsilon) ''independent of x'', such that choosing n\geq N will ensure that f_n(x) is within \epsilon of f(x) ''for all x\in E''. In contrast, pointwise convergence of f_n to f merely guarantees that for any x\in E given ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Providence, Rhode Island
Providence is the capital and most populous city of the U.S. state of Rhode Island. One of the oldest cities in New England, it was founded in 1636 by Roger Williams, a Reformed Baptist theologian and religious exile from the Massachusetts Bay Colony. He named the area in honor of "God's merciful Providence" which he believed was responsible for revealing such a haven for him and his followers. The city developed as a busy port as it is situated at the mouth of the Providence River in Providence County, at the head of Narragansett Bay. Providence was one of the first cities in the country to industrialize and became noted for its textile manufacturing and subsequent machine tool, jewelry, and silverware industries. Today, the city of Providence is home to eight hospitals and List of colleges and universities in Rhode Island#Institutions, eight institutions of higher learning which have shifted the city's economy into service industries, though it still retains some manufacturin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


McGraw-Hill
McGraw Hill is an American educational publishing company and one of the "big three" educational publishers that publishes educational content, software, and services for pre-K through postgraduate education. The company also publishes reference and trade publications for the medical, business, and engineering professions. McGraw Hill operates in 28 countries, has about 4,000 employees globally, and offers products and services to about 140 countries in about 60 languages. Formerly a division of The McGraw Hill Companies (later renamed McGraw Hill Financial, now S&P Global), McGraw Hill Education was divested and acquired by Apollo Global Management in March 2013 for $2.4 billion in cash. McGraw Hill was sold in 2021 to Platinum Equity for $4.5 billion. Corporate History McGraw Hill was founded in 1888 when James H. McGraw, co-founder of the company, purchased the ''American Journal of Railway Appliances''. He continued to add further publications, eventually establishing The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Carathéodory's Existence Theorem
In mathematics, Carathéodory's existence theorem says that an ordinary differential equation has a solution under relatively mild conditions. It is a generalization of Peano's existence theorem. Peano's theorem requires that the right-hand side of the differential equation be continuous, while Carathéodory's theorem shows existence of solutions (in a more general sense) for some discontinuous equations. The theorem is named after Constantin Carathéodory. Introduction Consider the differential equation : y'(t) = f(t,y(t)) with initial condition : y(t_0) = y_0, where the function ƒ is defined on a rectangular domain of the form : R = \. Peano's existence theorem states that if ƒ is continuous, then the differential equation has at least one solution in a neighbourhood of the initial condition. However, it is also possible to consider differential equations with a discontinuous right-hand side, like the equation : y'(t) = H(t), \quad y(0) = 0, where ''H'' denotes the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Picard–Lindelöf Theorem
In mathematics – specifically, in differential equations – the Picard–Lindelöf theorem gives a set of conditions under which an initial value problem has a unique solution. It is also known as Picard's existence theorem, the Cauchy–Lipschitz theorem, or the existence and uniqueness theorem. The theorem is named after Émile Picard, Ernst Lindelöf, Rudolf Lipschitz and Augustin-Louis Cauchy. Theorem Let D \subseteq \R \times \R^nbe a closed rectangle with (t_0, y_0) \in D. Let f: D \to \R^n be a function that is continuous in t and Lipschitz continuous in y. Then, there exists some such that the initial value problem y'(t)=f(t,y(t)),\qquad y(t_0)=y_0. has a unique solution y(t) on the interval _0-\varepsilon, t_0+\varepsilon/math>. Note that D is often instead required to be open but even under such an assumption, the proof only uses a closed rectangle within D. Proof sketch The proof relies on transforming the differential equation, and applying ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Theorem Of Calculus
The fundamental theorem of calculus is a theorem that links the concept of differentiating a function (calculating its slopes, or rate of change at each time) with the concept of integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). The two operations are inverses of each other apart from a constant value which depends on where one starts to compute area. The first part of the theorem, the first fundamental theorem of calculus, states that for a function , an antiderivative or indefinite integral may be obtained as the integral of over an interval with a variable upper bound. This implies the existence of antiderivatives for continuous functions. Conversely, the second part of the theorem, the second fundamental theorem of calculus, states that the integral of a function over a fixed interval is equal to the change of any antiderivative between the ends of the interval. This greatly simplifies the calculation of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closure (topology)
In topology, the closure of a subset of points in a topological space consists of all points in together with all limit points of . The closure of may equivalently be defined as the union of and its boundary, and also as the intersection of all closed sets containing . Intuitively, the closure can be thought of as all the points that are either in or "near" . A point which is in the closure of is a point of closure of . The notion of closure is in many ways dual to the notion of interior. Definitions Point of closure For S as a subset of a Euclidean space, x is a point of closure of S if every open ball centered at x contains a point of S (this point can be x itself). This definition generalizes to any subset S of a metric space X. Fully expressed, for X as a metric space with metric d, x is a point of closure of S if for every r > 0 there exists some s \in S such that the distance d(x, s) < r (x = s is allowed). Another way to express this is to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relatively Compact
In mathematics, a relatively compact subspace (or relatively compact subset, or precompact subset) of a topological space is a subset whose closure is compact. Properties Every subset of a compact topological space is relatively compact (since a closed subset of a compact space is compact). And in an arbitrary topological space every subset of a relatively compact set is relatively compact. Every compact subset of a Hausdorff space is relatively compact. In a non-Hausdorff space, such as the particular point topology on an infinite set, the closure of a compact subset is ''not'' necessarily compact; said differently, a compact subset of a non-Hausdorff space is not necessarily relatively compact. Every compact subset of a (possibly non-Hausdorff) topological vector space is complete and relatively compact. In the case of a metric topology, or more generally when sequences may be used to test for compactness, the criterion for relative compactness becomes that any sequence in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Arzelà–Ascoli Theorem
The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators. The notion of equicontinuity was introduced in the late 19th century by the Italian mathematicians Cesare Arzelà and Giulio Ascoli. A weak form of the theorem was proven by , who established the sufficient condition for compactness, and by , who established the necessary condition and gave the first clear presentation of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equicontinuous
In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus ''sequences'' of functions. Equicontinuity appears in the formulation of Ascoli's theorem, which states that a subset of ''C''(''X''), the space of continuous functions on a compact Hausdorff space ''X'', is compact if and only if it is closed, pointwise bounded and equicontinuous. As a corollary, a sequence in ''C''(''X'') is uniformly convergent if and only if it is equicontinuous and converges pointwise to a function (not necessarily continuous a-priori). In particular, the limit of an equicontinuous pointwise convergent sequence of continuous functions ''fn'' on either metric space or locally compact space is continuous. If, in addition, ''fn'' are holomorphic, then the limit is also holomorphic. The uniform bounde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]