PSL(2,7)
   HOME



picture info

PSL(2,7)
In mathematics, the projective special linear group , isomorphic to , is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane. With 168 elements, PSL(2, 7) is the smallest nonabelian simple group after the alternating group A5 with 60 elements, isomorphic to . Definition The general linear group consists of all invertible 2×2 matrices over F7, the finite field with 7 elements. These have nonzero determinant. The subgroup consists of all such matrices with unit determinant. Then is defined to be the quotient group : SL(2, 7) / obtained by identifying ''I'' and −''I'', where ''I'' is the identity matrix. In this article, we let ''G'' denote any group that is isomorphic to . Properties ''G'' = has 168 elements. This can be seen by counting the possible columns; there are possibilities for the first column, then possibilities f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Klein Quartic
In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus with the highest possible order automorphism group for this genus, namely order orientation-preserving automorphisms, and automorphisms if orientation may be reversed. As such, the Klein quartic is the Hurwitz surface of lowest possible genus; see Hurwitz's automorphisms theorem. Its (orientation-preserving) automorphism group is isomorphic to , the second-smallest non-abelian simple group after the alternating group A5. The quartic was first described in . Klein's quartic occurs in many branches of mathematics, in contexts including representation theory, homology theory, Fermat's Last Theorem, and the Stark–Heegner theorem on imaginary quadratic number fields of class number one; see for a survey of properties. Originally, the "Klein quartic" referred specifically to the subset of the complex projective plane defined by an algebraic equation. This has a speci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Normal P-complement
In group theory, a branch of mathematics, a normal ''p''-complement of a finite group, finite group (mathematics), group for a prime number, prime ''p'' is a normal subgroup of order (group theory), order coprime to ''p'' and index of a subgroup, index a power of ''p''. In other words the group is a semidirect product of the normal ''p''-complement and any Sylow subgroup, Sylow ''p''-subgroup. A group is called ''p''-nilpotent if it has a normal . Cayley normal 2-complement theorem Arthur Cayley, Cayley showed that if the Sylow 2-subgroup of a group ''G'' is cyclic group, cyclic then the group has a normal , which shows that the Sylow of a simple group of parity (mathematics), even order cannot be cyclic. Burnside normal ''p''-complement theorem showed that if a Sylow ''p''-subgroup of a group ''G'' is in the center (group theory), center of its normalizer then ''G'' has a normal . This implies that if ''p'' is the smallest prime dividing the order of a group ''G'' and the Sylo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


General Linear Group
In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with the identity matrix as the identity element of the group. The group is so named because the columns (and also the rows) of an invertible matrix are linearly independent, hence the vectors/points they define are in general linear position, and matrices in the general linear group take points in general linear position to points in general linear position. To be more precise, it is necessary to specify what kind of objects may appear in the entries of the matrix. For example, the general linear group over \R (the set of real numbers) is the group of n\times n invertible matrices of real numbers, and is denoted by \operatorname_n(\R) or \operatorname(n,\R). More generally ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quotient Group
A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored out"). For example, the cyclic group of addition modulo ''n'' can be obtained from the group of integers under addition by identifying elements that differ by a multiple of n and defining a group structure that operates on each such class (known as a congruence class) as a single entity. It is part of the mathematical field known as group theory. For a congruence relation on a group, the equivalence class of the identity element is always a normal subgroup of the original group, and the other equivalence classes are precisely the cosets of that normal subgroup. The resulting quotient is written , where G is the original group and N is the normal subgroup. This is read as '', where \text is short for modulo. (The notation should be interpreted w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projective Line
In projective geometry and mathematics more generally, a projective line is, roughly speaking, the extension of a usual line by a point called a '' point at infinity''. The statement and the proof of many theorems of geometry are simplified by the resultant elimination of special cases; for example, two distinct projective lines in a projective plane meet in exactly one point (there is no "parallel" case). There are many equivalent ways to formally define a projective line; one of the most common is to define a projective line over a field ''K'', commonly denoted P1(''K''), as the set of one-dimensional subspaces of a two-dimensional ''K''-vector space. This definition is a special instance of the general definition of a projective space. The projective line over the reals is a manifold; see '' Real projective line'' for details. Homogeneous coordinates An arbitrary point in the projective line P1(''K'') may be represented by an equivalence class of '' homogeneous coordi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Möbius Transformation
In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form f(z) = \frac of one complex number, complex variable ; here the coefficients , , , are complex numbers satisfying . Geometrically, a Möbius transformation can be obtained by first applying the inverse stereographic projection from the plane to the unit sphere, moving and rotating the sphere to a new location and orientation in space, and then applying a stereographic projection to map from the sphere back to the plane. These transformations preserve angles, map every straight line to a line or circle, and map every circle to a line or circle. The Möbius transformations are the projective transformations of the complex projective line. They form a group (mathematics), group called the Möbius group, which is the projective linear group . Together with its subgroups, it has numerous applications in mathematics and physics. Möbius geometry, Möbius geometries and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Centralizer And Normalizer
In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set \operatorname_G(S) of elements of ''G'' that commute with every element of ''S'', or equivalently, the set of elements g\in G such that conjugation by g leaves each element of ''S'' fixed. The normalizer of ''S'' in ''G'' is the set of elements \mathrm_G(S) of ''G'' that satisfy the weaker condition of leaving the set S \subseteq G fixed under conjugation. The centralizer and normalizer of ''S'' are subgroups of ''G''. Many techniques in group theory are based on studying the centralizers and normalizers of suitable subsets ''S''. Suitably formulated, the definitions also apply to semigroups. In ring theory, the centralizer of a subset of a ring is defined with respect to the multiplication of the ring (a semigroup operation). The centralizer of a subset of a ring ''R'' is a subring of ''R''. This article also deals with centralizers and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dihedral Group Of Order 8
In mathematics, D4 (sometimes alternatively denoted by D8) is the dihedral group of degree 4 and order 8. It is the symmetry group of a square. Symmetries of a square As an example, consider a square of a certain thickness with the letter "F" written on it to make the different positions distinguishable. In order to describe its symmetry, one can form the set of all those rigid movements of the square that do not make a visible difference (except the "F"). For instance, if an object turned 90° clockwise still looks the same, the movement is one element of the set, for instance, . One could also flip it around a vertical axis so that its bottom surface becomes its top surface, while the left edge becomes the right edge. Again, after performing this movement, the square looks the same, so this is also an element of our set, which is called it . The movement that does nothing is denoted by . Generating the group With composition as the operation, the set of all those movement ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, generated by a single element. That is, it is a set (mathematics), set of Inverse element, invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer Exponentiation, power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a ''Generating set of a group, generator'' of the group. Every infinite cyclic group is isomorphic to the additive group \Z, the integers. Every finite cyclic group of Order (group theory), order n is isomorphic to the additive group of Quotient group, Z/''n''Z, the in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sylow Theorems
In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the classification of finite simple groups. For a prime number p, a ''p''-group is a group whose cardinality is a power of p; or equivalently, the order of each group element is some power of p. A Sylow ''p''-subgroup (sometimes ''p''-Sylow subgroup) of a finite group G is a maximal p-subgroup of G, i.e., a subgroup of G that is a ''p''-group and is not a proper subgroup of any other p-subgroup of G. The set of all Sylow p-subgroups for a given prime p is sometimes written \text_p(G). The Sylow theorems assert a partial converse to Lagrange's theorem. Lagrange's theorem states that for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Irreducible Representation
In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation (\rho, V) or irrep of an algebraic structure A is a nonzero representation that has no proper nontrivial subrepresentation (\rho, _W,W), with W \subset V closed under the action of \. Every finite-dimensional unitary representation on a Hilbert space V is the direct sum of irreducible representations. Irreducible representations are always indecomposable (i.e. cannot be decomposed further into a direct sum of representations), but the converse may not hold, e.g. the two-dimensional representation of the real numbers acting by upper triangular unipotent matrices is indecomposable but reducible. History Group representation theory was generalized by Richard Brauer from the 1940s to give modular representation theory, in which the matrix operators act on a vector space over a field K of arbitrary characteristic, rather than a vector space over the field of real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]