HOME
*





Proportional Item Allocation
Proportional item allocation is a fair item allocation problem, in which the fairness criterion is proportionality - each agent should receive a bundle that they value at least as much as 1/''n'' of the entire allocation, where ''n'' is the number of agents. Since the items are indivisible, a proportional assignment may not exist. The simplest case is when there is a single item and at least two agents: if the item is assigned to one agent, the other will have a value of 0, which is less than 1/2. Therefore, the literature considers various relaxations of the proportionality requirement. Proportional allocation An allocation of objects is called proportional (PROP) if every agent ''i'' values his bundle at least 1/''n'' of the total. Formally, for all ''i'' (where ''M'' is the set of all goods): * V_i(X_i) \geq V_i(M)/n. A proportional division may not exist. For example, if the number of people is larger than the number of items, then some people will get no item at all and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fair Item Allocation
Fair item allocation is a kind of a fair division problem in which the items to divide are ''discrete'' rather than continuous. The items have to be divided among several partners who value them differently, and each item has to be given as a whole to a single person. This situation arises in various real-life scenarios: * Several heirs want to divide the inherited property, which contains e.g. a house, a car, a piano and several paintings. * Several lecturers want to divide the courses given in their faculty. Each lecturer can teach one or more whole courses. *White elephant gift exchange parties The indivisibility of the items implies that a fair division may not be possible. As an extreme example, if there is only a single item (e.g. a house), it must be given to a single partner, but this is not fair to the other partners. This is in contrast to the fair cake-cutting problem, where the dividend is divisible and a fair division always exists. In some cases, the indivisibility pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proportional Division
A proportional division is a kind of fair division in which a resource is divided among ''n'' partners with subjective valuations, giving each partner at least 1/''n'' of the resource by his/her own subjective valuation. Proportionality was the first fairness criterion studied in the literature; hence it is sometimes called "simple fair division". It was first conceived by Steinhaus. Example Consider a land asset that has to be divided among 3 heirs: Alice and Bob who think that it's worth 3 million dollars, and George who thinks that it's worth $4.5M. In a proportional division, Alice receives a land-plot that she believes to be worth at least $1M, Bob receives a land-plot that ''he'' believes to be worth at least $1M (even though Alice may think it is worth less), and George receives a land-plot that he believes to be worth at least $1.5M. Existence A proportional division does not always exist. For example, if the resource contains several indivisible items and the number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinal Utility
In economics, a cardinal utility function or scale is a utility index that preserves preference orderings uniquely up to positive affine transformations. Two utility indices are related by an affine transformation if for the value u(x_i) of one index ''u'', occurring at any quantity x_i of the goods bundle being evaluated, the corresponding value v(x_i) of the other index ''v'' satisfies a relationship of the form :v(x_i) = au(x_i) + b\!, for fixed constants ''a'' and ''b''. Thus the utility functions themselves are related by :v(x) = au(x) + b. The two indices differ only with respect to scale and origin. Thus if one is concave, so is the other, in which case there is often said to be diminishing marginal utility. Thus the use of cardinal utility imposes the assumption that levels of absolute satisfaction exist, so that the magnitudes of increments to satisfaction can be compared across different situations. In consumer choice theory, ordinal utility with its weaker assumption ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NP-complete
In computational complexity theory, a problem is NP-complete when: # it is a problem for which the correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying all possible solutions. # the problem can be used to simulate every other problem for which we can verify quickly that a solution is correct. In this sense, NP-complete problems are the hardest of the problems to which solutions can be verified quickly. If we could find solutions of some NP-complete problem quickly, we could quickly find the solutions of every other problem to which a given solution can be easily verified. The name "NP-complete" is short for "nondeterministic polynomial-time complete". In this name, "nondeterministic" refers to nondeterministic Turing machines, a way of mathematically formalizing the idea of a brute-force search algorithm. Polynomial time refers to an amount of time that is considered "quick" for a de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partition Problem
In number theory and computer science, the partition problem, or number partitioning, is the task of deciding whether a given multiset ''S'' of positive integers can be partitioned into two subsets ''S''1 and ''S''2 such that the sum of the numbers in ''S''1 equals the sum of the numbers in ''S''2. Although the partition problem is NP-complete, there is a pseudo-polynomial time dynamic programming solution, and there are heuristics that solve the problem in many instances, either optimally or approximately. For this reason, it has been called "the easiest hard problem". There is an optimization version of the partition problem, which is to partition the multiset ''S'' into two subsets ''S''1, ''S''2 such that the difference between the sum of elements in ''S''1 and the sum of elements in ''S''2 is minimized. The optimization version is NP-hard, but can be solved efficiently in practice. The partition problem is a special case of two related problems: * In the subset sum problem, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Utility
In economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. Ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask ''how much'' better it is or how good it is. All of the theory of consumer decision-making under conditions of certainty can be, and typically is, expressed in terms of ordinal utility. For example, suppose George tells us that "I prefer A to B and B to C". George's preferences can be represented by a function ''u'' such that: :u(A)=9, u(B)=8, u(C)=1 But critics of cardinal utility claim the only meaningful message of this function is the order u(A)>u(B)>u(C); the actual numbers are meaningless. Hence, George's preferences can also be represented by the following function ''v'': :v(A)=9, v(B)=2, v(C)=1 The functions ''u'' and ''v'' are ordinally equivalent – they represent George's preferences equally well. Ordinal utility contrasts ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Entitlement (fair Division)
Entitlement in fair division describes that proportion of the resources or goods to be divided that a player can expect to receive. In many fair division settings, all agents have ''equal entitlements'', which means that each agent is entitled to 1/''n'' of the resource. But there are practical settings in which agents have ''different entitlements''. Some examples are: * In partnership resolution settings, each partner is entitled to a fraction of the common assets in proportion to his/her investment in the partnership. * In inheritance settings, the law in some jurisdictions prescribes a different share to each heir according to his/her proximity to the deceased person. For example, according to the Bible, the firstborn son must receive twice as much as every other son. In contrast, according to the Italian law, when there are three heirs - parent, brother and spouse - they are entitled to 1/4, 1/12 and 2/3 respectively. * In parliamentary democracies, each party is entitled to a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bipartite Graph
In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets U and V, that is every edge connects a vertex in U to one in V. Vertex sets U and V are usually called the ''parts'' of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. The two sets U and V may be thought of as a coloring of the graph with two colors: if one colors all nodes in U blue, and all nodes in V red, each edge has endpoints of differing colors, as is required in the graph coloring problem.. In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a triangle: after one node is colored blue and another red, the third vertex of the triangle is connected to vertices of both colors, preventing it from being assigned either color. One often writes G=(U,V,E) to denote a bipartite graph whose partition has the parts U and V, with E denoting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matching (graph Theory)
In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. Finding a matching in a bipartite graph can be treated as a network flow problem. Definitions Given a graph a matching ''M'' in ''G'' is a set of pairwise non-adjacent edges, none of which are loops; that is, no two edges share common vertices. A vertex is matched (or saturated) if it is an endpoint of one of the edges in the matching. Otherwise the vertex is unmatched (or unsaturated). A maximal matching is a matching ''M'' of a graph ''G'' that is not a subset of any other matching. A matching ''M'' of a graph ''G'' is maximal if every edge in ''G'' has a non-empty intersection with at least one edge in ''M''. The following figure shows examples of maximal matchings (red) in three graphs. : A maximum matching (also known as maximum-cardinality matching) is a matching that contains the largest possible number of edges. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Envy-free Item Allocation
Envy-free (EF) item allocation is a fair item allocation problem, in which the fairness criterion is envy-freeness - each agent should receive a bundle that they believe to be at least as good as the bundle of any other agent. Since the items are indivisible, an EF assignment may not exist. The simplest case is when there is a single item and at least two agents: if the item is assigned to one agent, the other will envy. One way to attain fairness is to use monetary transfers; see Fair allocation of items and money. When monetary transfers are not allowed or not desired, there are allocation algorithms providing various kinds of relaxations. Finding an envy-free allocation whenever it exists Preference-orderings on bundles: envy-freeness The undercut procedure finds a complete EF allocation for two agents, if-and-only-if such allocation exists. It requires the agents to rank bundles of items, but it does not require cardinal utility information. It works whenever the agents' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximin Share
Maximin share (MMS) is a criterion of fair item allocation. Given a set of items with different values, the ''1-out-of-n maximin-share'' is the maximum value that can be gained by partitioning the items into ''n'' parts and taking the part with the minimum value. An allocation of items among ''n'' agents with different valuations is called MMS-fair if each agent gets a bundle that is at least as good as his/her 1-out-of-''n'' maximin-share. MMS fairness was invented by Eric Budish as a relaxation of the criterion of proportionality - each agent gets a bundle that is at least as good as the equal split (1/''n'' of every resource). Proportionality can be guaranteed when the items are divisible, but not when they are indivisible, even if all agents have identical valuations. In contrast, MMS fairness can always be guaranteed to identical agents, so it is a natural alternative to proportionality even when the agents are different. Motivation and examples Identical items. Suppose fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Round-robin Item Allocation
Round robin is a procedure for fair item allocation. It can be used to allocate several indivisible items among several people, such that the allocation is "almost" envy-free: each agent believes that the bundle he received is at least as good as the bundle of any other agent, when at most one item is removed from the other bundle. In sports, the round-robin procedure is called a draft. Setting There are ''m'' objects to allocate, and ''n'' people ("agents") with equal rights to these objects. Each person has different preferences over the objects. The preferences of an agent are given by a vector of values - a value for each object. It is assumed that the value of a bundle for an agent is the sum of the values of the objects in the bundle (in other words, the agents' valuations are an additive set function on the set of objects). Description The protocol proceeds as follows: # Number the people arbitrarily from 1 to n; # While there are unassigned objects: #* Let each per ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]