HOME
*





Projective Bundle
In mathematics, a projective bundle is a fiber bundle whose fibers are projective spaces. By definition, a scheme ''X'' over a Noetherian scheme ''S'' is a P''n''-bundle if it is locally a projective ''n''-space; i.e., X \times_S U \simeq \mathbb^n_U and transition automorphisms are linear. Over a regular scheme ''S'' such as a smooth variety, every projective bundle is of the form \mathbb(E) for some vector bundle (locally free sheaf) ''E''. The projective bundle of a vector bundle Every vector bundle over a variety ''X'' gives a projective bundle by taking the projective spaces of the fibers, but not all projective bundles arise in this way: there is an obstruction in the cohomology group ''H''2(''X'',O*). To see why, recall that a projective bundle comes equipped with transition functions on double intersections of a suitable open cover. On triple overlaps, any lift of these transition functions satisfies the cocycle condition up to an invertible function. The collection of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cohomology Ring
In mathematics, specifically algebraic topology, the cohomology ring of a topological space ''X'' is a ring formed from the cohomology groups of ''X'' together with the cup product serving as the ring multiplication. Here 'cohomology' is usually understood as singular cohomology, but the ring structure is also present in other theories such as de Rham cohomology. It is also functorial: for a continuous mapping of spaces one obtains a ring homomorphism on cohomology rings, which is contravariant. Specifically, given a sequence of cohomology groups ''H''''k''(''X'';''R'') on ''X'' with coefficients in a commutative ring ''R'' (typically ''R'' is Z''n'', Z, Q, R, or C) one can define the cup product, which takes the form :H^k(X;R) \times H^\ell(X;R) \to H^(X; R). The cup product gives a multiplication on the direct sum of the cohomology groups :H^\bullet(X;R) = \bigoplus_ H^k(X; R). This multiplication turns ''H''•(''X'';''R'') into a ring. In fact, it is naturally an N-graded ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ergebnisse Der Mathematik Und Ihrer Grenzgebiete
''Ergebnisse der Mathematik und ihrer Grenzgebiete''/''A Series of Modern Surveys in Mathematics'' is a series of scholarly monographs published by Springer Science+Business Media. The title literally means "Results in mathematics and related areas". Most of the books were published in German or English, but there were a few in French and Italian. There have been several sequences, or ''Folge'': the original series, neue Folge, and 3.Folge. Some of the most significant mathematical monographs of 20th century appeared in this series. Original series The series started in 1932 with publication of ''Knotentheorie'' by Kurt Reidemeister as "Band 1" (English: volume 1). There seems to have been double numeration in this sequence. Neue Folge This sequence started in 1950 with the publication of ''Transfinite Zahlen'' by Heinz Bachmann. The volumes are consecutively numbered, designated as either "Band" or "Heft". A total of 100 volumes was published, often in multiple editions, but pre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Journal Für Die Reine Und Angewandte Mathematik
''Crelle's Journal'', or just ''Crelle'', is the common name for a mathematics journal, the ''Journal für die reine und angewandte Mathematik'' (in English: ''Journal for Pure and Applied Mathematics''). History The journal was founded by August Leopold Crelle (Berlin) in 1826 and edited by him until his death in 1855. It was one of the first major mathematical journals that was not a proceedings of an academy. It has published many notable papers, including works of Niels Henrik Abel, Georg Cantor, Gotthold Eisenstein, Carl Friedrich Gauss and Otto Hesse. It was edited by Carl Wilhelm Borchardt from 1856 to 1880, during which time it was known as ''Borchardt's Journal''. The current editor-in-chief is Rainer Weissauer (Ruprecht-Karls-Universität Heidelberg) Past editors * 1826–1856 August Leopold Crelle * 1856–1880 Carl Wilhelm Borchardt * 1881–1888 Leopold Kronecker, Karl Weierstrass * 1889–1892 Leopold Kronecker * 1892–1902 Lazarus Fuchs * 1903–1928 Kurt Hens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hirzebruch Surface
In mathematics, a Hirzebruch surface is a ruled surface over the projective line. They were studied by . Definition The Hirzebruch surface \Sigma_n is the \mathbb^1-bundle, called a Projective bundle, over \mathbb^1 associated to the sheaf\mathcal\oplus \mathcal(-n).The notation here means: \mathcal(n) is the -th tensor power of the Serre twist sheaf \mathcal(1), the invertible sheaf or line bundle with associated Cartier divisor a single point. The surface \Sigma_0 is isomorphic to , and \Sigma_1 is isomorphic to blown up at a point so is not minimal. GIT quotient One method for constructing the Hirzebruch surface is by using a GIT quotient\Sigma_n = (\Complex^2-\)\times (\Complex^2-\)/(\Complex^*\times\Complex^*)where the action of \Complex^*\times\Complex^* is given by(\lambda, \mu)\cdot(l_0,l_1,t_0,t_1) = (\lambda l_0, \lambda l_1, \mu t_0,\lambda^\mu t_1)This action can be interpreted as the action of \lambda on the first two factors comes from the action of \Complex^* o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Severi–Brauer Variety
In mathematics, a Severi–Brauer variety over a field ''K'' is an algebraic variety ''V'' which becomes isomorphic to a projective space over an algebraic closure of ''K''. The varieties are associated to central simple algebras in such a way that the algebra splits over ''K'' if and only if the variety has a point rational over ''K''.Jacobson (1996) p.113 studied these varieties, and they are also named after Richard Brauer because of their close relation to the Brauer group. In dimension one, the Severi–Brauer varieties are conics. The corresponding central simple algebras are the quaternion algebras. The algebra (''a'',''b'')''K'' corresponds to the conic ''C''(''a'',''b'') with equation :z^2 = ax^2 + by^2 \ and the algebra (''a'',''b'')''K'' ''splits'', that is, (''a'',''b'')''K'' is isomorphic to a matrix algebra over ''K'', if and only if ''C''(''a'',''b'') has a point defined over ''K'': this is in turn equivalent to ''C''(''a'',''b'') being isomorphic to the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ruled Surface
In geometry, a surface is ruled (also called a scroll) if through every point of there is a straight line that lies on . Examples include the plane, the lateral surface of a cylinder or cone, a conical surface with elliptical directrix, the right conoid, the helicoid, and the tangent developable of a smooth curve in space. A ruled surface can be described as the set of points swept by a moving straight line. For example, a cone is formed by keeping one point of a line fixed whilst moving another point along a circle. A surface is ''doubly ruled'' if through every one of its points there are two distinct lines that lie on the surface. The hyperbolic paraboloid and the hyperboloid of one sheet are doubly ruled surfaces. The plane is the only surface which contains at least three distinct lines through each of its points . The properties of being ruled or doubly ruled are preserved by projective maps, and therefore are concepts of projective geometry. In algebraic geometry, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cone (algebraic Geometry)
In algebraic geometry, a cone is a generalization of a vector bundle. Specifically, given a scheme ''X'', the relative Spec :C = \operatorname_X R of a quasi-coherent graded ''O''''X''-algebra ''R'' is called the cone or affine cone of ''R''. Similarly, the relative Proj :\mathbb(C) = \operatorname_X R is called the projective cone of ''C'' or ''R''. Note: The cone comes with the \mathbb_m-action due to the grading of ''R''; this action is a part of the data of a cone (whence the terminology). Examples *If ''X'' = Spec ''k'' is a point and ''R'' is a homogeneous coordinate ring, then the affine cone of ''R'' is the (usual) affine cone over the projective variety corresponding to ''R''. *If R = \bigoplus_0^\infty I^n/I^ for some ideal sheaf ''I'', then \operatorname_X R is the normal cone to the closed scheme determined by ''I''. *If R = \bigoplus_0^\infty L^ for some line bundle ''L'', then \operatorname_X R is the total space of the dual of ''L''. *More generally, given a vecto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proj Construction
In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory. In this article, all rings will be assumed to be commutative and with identity. Proj of a graded ring Proj as a set Let S be a graded ring, whereS = \bigoplus_ S_iis the direct sum decomposition associated with the gradation. The irrelevant ideal of S is the ideal of elements of positive degreeS_+ = \bigoplus_ S_i .We say an ideal is homogeneous if it is generated by homogeneous elements. Then, as a set,\operatorname S = \. For brevity we will sometimes write X for \operatorname S. Proj as a topological space We may define a topology, called the Zariski topology, on \operatorname S by defining the closed sets to be those of the form :V(a) = \, where a is a homogeneous ideal of S. As in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gysin Homomorphism
In the field of mathematics known as algebraic topology, the Gysin sequence is a long exact sequence which relates the cohomology classes of the base space, the fiber and the total space of a sphere bundle. The Gysin sequence is a useful tool for calculating the cohomology rings given the Euler class of the sphere bundle and vice versa. It was introduced by , and is generalized by the Serre spectral sequence. Definition Consider a fiber-oriented sphere bundle with total space ''E'', base space ''M'', fiber ''S''''k'' and projection map \pi: S^k \hookrightarrow E \stackrel M. Any such bundle defines a degree ''k'' + 1 cohomology class ''e'' called the Euler class of the bundle. De Rham cohomology Discussion of the sequence is clearest with de Rham cohomology. There cohomology classes are represented by differential forms, so that ''e'' can be represented by a (''k'' + 1)-form. The projection map \pi induces a map in cohomology H^\ast called its pullback \pi^ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chow Ring
In algebraic geometry, the Chow groups (named after Wei-Liang Chow by ) of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties (so-called algebraic cycles) in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups (compare Poincaré duality) and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general. Rational equivalence and Chow groups For what follows, define a variety over a field k to be an integral scheme of finite type over k. For any scheme X of finite type over k, an algebraic cycle on X means a finite linear combination of subvarieties of X with integer coefficients. (Here and below, subvarieties are understood to b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]