HOME
*





Problems In Loop Theory And Quasigroup Theory
In mathematics, especially abstract algebra, loop (algebra), loop theory and quasigroup theory are active research areas with many open problems. As in other areas of mathematics, such problems are often made public at professional conferences and meetings. Many of the problems posed here first appeared in the ''Loops (Prague)'' conferences and the ''Mile High (Denver)'' conferences. Open problems (Moufang loops) Abelian by cyclic groups resulting in Moufang loops Let ''L'' be a Moufang loop with normal Abelian group, abelian subgroup (associative subloop) ''M'' of odd order such that ''L''/''M'' is a cyclic group of order bigger than 3. (i) Is ''L'' a Group (mathematics), group? (ii) If the orders of ''M'' and ''L''/''M'' are relatively prime, is L a group? *''Proposed:'' by Michael Kinyon, based on (Chein and Rajah, 2000) *''Comments:'' The assumption that ''L''/''M'' has order bigger than 3 is important, as there is a (commutative) Moufang loop ''L'' of order 81 with norma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set (mathematics)
A set is the mathematical model for a collection of different things; a set contains '' elements'' or ''members'', which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. History The concept of a set emerged in mathematics at the end of the 19th century. The German word for set, ''Menge'', was coined by Bernard Bolzano in his work ''Paradoxes of the Infinite''. Georg Cantor, one of the founders of set theory, gave the following defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathieu Group
In group theory, a topic in abstract algebra, the Mathieu groups are the five sporadic simple groups ''M''11, ''M''12, ''M''22, ''M''23 and ''M''24 introduced by . They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 objects. They were the first sporadic groups to be discovered. Sometimes the notation ''M''9, ''M''10, ''M''20 and ''M''21 is used for related groups (which act on sets of 9, 10, 20, and 21 points, respectively), namely the stabilizers of points in the larger groups. While these are not sporadic simple groups, they are subgroups of the larger groups and can be used to construct the larger ones. John Conway has shown that one can also extend this sequence up, obtaining the Mathieu groupoid ''M''13 acting on 13 points. ''M''21 is simple, but is not a sporadic group, being isomorphic to PSL(3,4). History introduced the group ''M''12 as part of an investigation of multiply transitive permutation groups, and briefly mentioned (on page 274) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zappa–Szép Product
In mathematics, especially group theory, the Zappa–Szép product (also known as the Zappa–Rédei–Szép product, general product, knit product, exact factorization or bicrossed product) describes a way in which a group can be constructed from two subgroups. It is a generalization of the direct and semidirect products. It is named after Guido Zappa (1940) and Jenő Szép (1950) although it was independently studied by others including B.H. Neumann (1935), G.A. Miller (1935), and J.A. de Séguier (1904). Internal Zappa–Szép products Let ''G'' be a group with identity element ''e'', and let ''H'' and ''K'' be subgroups of ''G''. The following statements are equivalent: * ''G'' = ''HK'' and ''H'' ∩ ''K'' = * For each ''g'' in ''G'', there exists a unique ''h'' in ''H'' and a unique ''k'' in ''K'' such that ''g = hk''. If either (and hence both) of these statements hold, then ''G'' is said to be an internal Zappa–Szép product of ''H'' and ''K''. Examples Let ''G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Extension
In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable if its Galois group is solvable, i.e., if the group can be decomposed into a series of normal extensions of an abelian group. Every finite extension of a finite field is a cyclic extension. Class field theory provides detailed information about the abelian extensions of number fields, function fields of algebraic curves over finite fields, and local fields. There are two slightly different definitions of the term cyclotomic extension. It can mean either an extension formed by adjoining roots of unity to a field, or a subextension of such an extension. The cyclotomic fields are examples. A cyclotomic extension, under either definition, is always abelian. If a field ''K'' contains a primitive ''n''-th root of unity and the ''n''-th ro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions. Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the linear ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphic Loop
Automorphic may refer to *Automorphic number, in mathematics *Automorphic form, in mathematics * Automorphic representation, in mathematics * Automorphic L-function, in mathematics *Automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ..., in mathematics * Rock microstructure#Crystal shapes {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' join ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variety (universal Algebra)
In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to #Birkhoff's_theorem, Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphism, homomorphic images, subalgebras and Direct product#Direct product in universal algebra, (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a Category (mathematics), category; these are usually called ''finitary algebraic categories''. A ''covariety'' is the class of all F-coalgebra, coalgebraic structures of a given signature. Terminology A variety of algebras should not be confused with an algebraic variety, which means a set of solutions to a system of polynomial eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generating Set Of A Group
In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses. In other words, if ''S'' is a subset of a group ''G'', then , the ''subgroup generated by S'', is the smallest subgroup of ''G'' containing every element of ''S'', which is equal to the intersection over all subgroups containing the elements of ''S''; equivalently, is the subgroup of all elements of ''G'' that can be expressed as the finite product of elements in ''S'' and their inverses. (Note that inverses are only needed if the group is infinite; in a finite group, the inverse of an element can be expressed as a power of that element.) If ''G'' = , then we say that ''S'' ''generates'' ''G'', and the elements in ''S'' are called ''generators'' or ''group generators''. If ''S'' is the empty set, then is the trivial group , since we consider th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bipartite Graph
In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets U and V, that is every edge connects a vertex in U to one in V. Vertex sets U and V are usually called the ''parts'' of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. The two sets U and V may be thought of as a coloring of the graph with two colors: if one colors all nodes in U blue, and all nodes in V red, each edge has endpoints of differing colors, as is required in the graph coloring problem.. In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a triangle: after one node is colored blue and another red, the third vertex of the triangle is connected to vertices of both colors, preventing it from being assigned either color. One often writes G=(U,V,E) to denote a bipartite graph whose partition has the parts U and V, with E denoting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]