Positive Current
   HOME
*





Positive Current
In mathematics, more particularly in complex geometry, algebraic geometry and complex analysis, a positive current is a positive (''n-p'',''n-p'')-form over an ''n''-dimensional complex manifold, taking values in distributions. For a formal definition, consider a manifold ''M''. Currents on ''M'' are (by definition) differential forms with coefficients in distributions; integrating over ''M'', we may consider currents as "currents of integration", that is, functionals :\eta \mapsto \int_M \eta\wedge \rho on smooth forms with compact support. This way, currents are considered as elements in the dual space to the space \Lambda_c^*(M) of forms with compact support. Now, let ''M'' be a complex manifold. The Hodge decomposition \Lambda^i(M)=\bigoplus_\Lambda^(M) is defined on currents, in a natural way, the ''(p,q)''-currents being functionals on \Lambda_c^(M). A positive current is defined as a real current of Hodge type ''(p,p)'', taking non-negative values on all positive ''(p, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Geometry
In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis. Complex geometry sits at the intersection of algebraic geometry, differential geometry, and complex analysis, and uses tools from all three areas. Because of the blend of techniques and ideas from various areas, problems in complex geometry are often more tractable or concrete than in general. For example, the classification of complex manifolds and complex algebraic varieties through the minimal model program and the construction of moduli spaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hahn–Banach Theorem
The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear functionals defined on every normed vector space to make the study of the dual space "interesting". Another version of the Hahn–Banach theorem is known as the Hahn–Banach separation theorem or the hyperplane separation theorem, and has numerous uses in convex geometry. History The theorem is named for the mathematicians Hans Hahn and Stefan Banach, who proved it independently in the late 1920s. The special case of the theorem for the space C[a, b] of continuous functions on an interval was proved earlier (in 1912) by Eduard Helly, and a more general extension theorem, the M. Riesz extension theorem, from which the Hahn–Banach theorem can be derived, was proved in 1923 by Marcel Riesz. The first Hahn–Banach theorem was proved by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jean-Pierre Demailly
Jean-Pierre Demailly (25 September 1957 – 17 March 2022) was a French mathematician who worked in complex geometry. He was a professor at Université Grenoble Alpes and a permanent member of the French Academy of Sciences. Early life and education Demailly was born on 25 September 1957 in Péronne, France. He attended the Lycée de Péronne from 1966 to 1973 and the Lycée Faidherbe from 1973 to 1975. He entered the École Normale Supérieure in 1975, where he received his agrégation in 1977 and graduated in 1979. During this time, he received an undergraduate '' licence'' degree from Paris Diderot University in 1976 and a ''diplôme d'études approfondies'' under Henri Skoda at the Pierre and Marie Curie University in 1979. He received his ''Doctorat d'État'' in 1982 under the direction of Skoda at the Pierre and Marie Curie University, with thesis "Sur différents aspects de la positivité en analyse complexe". Career Demailly became a professor at Université Grenobl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joe Harris (mathematician)
Joseph Daniel Harris (born August 17, 1951) is a mathematician at Harvard University working in the field of algebraic geometry. After earning an AB from Harvard College, he continued at Harvard to study for a PhD under Phillip Griffiths. Work During the 1980s, he was on the faculty of Brown University, moving to Harvard around 1988. He served as chair of the department at Harvard from 2002 to 2005. His work is characterized by its classical geometric flavor: he has claimed that nothing he thinks about could not have been imagined by the Italian geometers of the late 19th and early 20th centuries, and that if he has had greater success than them, it is because he has access to better tools. Harris is well known for several of his books on algebraic geometry, notable for their informal presentations: * ''Principles of Algebraic Geometry'' , with Phillip Griffiths * ''Geometry of Algebraic Curves, Vol. 1'' , with Enrico Arbarello, Maurizio Cornalba, and Phillip Griffiths * , wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Phillip Griffiths
Phillip Augustus Griffiths IV (born October 18, 1938) is an American mathematician, known for his work in the field of geometry, and in particular for the complex manifold approach to algebraic geometry. He was a major developer in particular of the theory of variation of Hodge structure in Hodge theory and moduli theory. He also worked on partial differential equations, coauthored with Shiing-Shen Chern, Robert Bryant and Robert Gardner on Exterior Differential Systems. Professional career He received his BS from Wake Forest College in 1959 and his PhD from Princeton University in 1962 after completing a doctoral dissertation, titled "On certain homogeneous complex manifolds", under the supervision of Donald Spencer. Afterwards, he held positions at University of California, Berkeley (1962–1967) and Princeton University (1967–1972). Griffiths was a professor of mathematics at Harvard University from 1972 to 1983. He was then a Provost and James B. Duke Professor o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homology Class
Homology may refer to: Sciences Biology *Homology (biology), any characteristic of biological organisms that is derived from a common ancestor *Sequence homology, biological homology between DNA, RNA, or protein sequences *Homologous chromosomes, chromosomes in a biological cell that pair up (synapse) during meiosis *Homologous recombination, genetic recombination in which nucleotide sequences are exchanged between molecules of DNA *Homologous desensitization, a receptor decreases its response to a signalling molecule when that agonist is in high concentration *Homology modeling, a method of protein structure prediction Chemistry *Homology (chemistry), the relationship between compounds in a homologous series *Homologous series, a series of organic compounds having different quantities of a repeated unit *Homologous temperature, the temperature of a material as a fraction of its absolute melting point *Homologation reaction, a chemical reaction which produces the next lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. The main interest in Riemann surfaces is that holomorphic functions may be defined between them. Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially multi-valued functions such as the square root and other algebraic functions, or the logarithm. Every Riemann surface is a two-dimensional real analytic manifold (i.e., a surface), but it contains more structure (specifically a complex structure) which is needed for the unambiguous definitio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

De Rham Cohomology
In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties. On any smooth manifold, every exact form is closed, but the converse may fail to hold. Roughly speaking, this failure is related to the possible existence of "holes" in the manifold, and the de Rham cohomology groups comprise a set of topological invariants of smooth manifolds that precisely quantify this relationship. Definition The de Rham complex is the cochain complex of differential forms on some smooth manifold , with the exterior derivative as the differential: :0 \to \Omega^0(M)\ \stackrel\ \Omega^1(M)\ \stackrel\ \Omega^2(M)\ \stackrel\ \Omega^3(M) \to \cd ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kähler Manifold
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics. Every smooth complex projective variety is a Kähler manifold. Hodge theory is a central part of algebraic geometry, proved using Kähler metrics. Definitions Since Kähler manifolds are equipped with several compatible structures, they can be described from different points of view: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


De Rham Cohomology
In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties. On any smooth manifold, every exact form is closed, but the converse may fail to hold. Roughly speaking, this failure is related to the possible existence of "holes" in the manifold, and the de Rham cohomology groups comprise a set of topological invariants of smooth manifolds that precisely quantify this relationship. Definition The de Rham complex is the cochain complex of differential forms on some smooth manifold , with the exterior derivative as the differential: :0 \to \Omega^0(M)\ \stackrel\ \Omega^1(M)\ \stackrel\ \Omega^2(M)\ \stackrel\ \Omega^3(M) \to \cd ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distribution (mathematics)
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative. Distributions are widely used in the theory of partial differential equations, where it may be easier to establish the existence of distributional solutions than classical solutions, or where appropriate classical solutions may not exist. Distributions are also important in physics and engineering where many problems naturally lead to differential equations whose solutions or initial conditions are singular, such as the Dirac delta function. A function f is normally thought of as on the in the function domain by "sending" a point x in its domain to the point f(x). Instead of acting on points, distribution theory reinterpr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]