HOME



picture info

Polyhedral Combinatorics
Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas. Mathematicians in this area study the combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ... of polytopes; for instance, they seek inequality (mathematics), inequalities that describe the relations between the numbers of vertex (geometry), vertices, edge (geometry), edges, and faces of higher dimensions in arbitrary polytopes or in certain important subclasses of polytopes, and study other combinatorial properties of polytopes such as their Connectivity (graph theory), connectivity and dia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cube
A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It is a type of parallelepiped, with pairs of parallel opposite faces, and more specifically a rhombohedron, with congruent edges, and a rectangular cuboid, with right angles between pairs of intersecting faces and pairs of intersecting edges. It is an example of many classes of polyhedra: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron. The cube can be represented in many ways, one of which is the graph known as the cubical graph. It can be constructed by using the Cartesian product of graphs. The cube is the three-dimensional hypercube, a family of polytopes also including the two-dimensional square and four-dimensional tesseract. A cube with 1, unit s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Neighborly Polytope
In geometry and polyhedral combinatorics, a -neighborly polytope is a convex polytope in which every set of or fewer vertices forms a face. For instance, a 2-neighborly polytope is a polytope in which every pair of vertices is connected by an edge, forming a complete graph. 2-neighborly polytopes with more than four vertices may exist only in spaces of four or more dimensions, and in general a -neighborly polytope (other than a simplex) requires a dimension of or more. A -simplex is -neighborly. A polytope is said to be neighborly, without specifying , if it is -neighborly for . If we exclude simplices, this is the maximum possible : in fact, every polytope that is -neighborly for some is a simplex. In a -neighborly polytope with , every 2-face must be a triangle, and in a -neighborly polytope with , every 3-face must be a tetrahedron. More generally, in any -neighborly polytope, all faces of dimension less than are simplices. The cyclic polytopes formed as the convex hulls ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Upper Bound Theorem
In mathematics, the upper bound theorem states that cyclic polytopes have the largest possible number of faces among all convex polytopes with a given dimension and number of vertices. It is one of the central results of polyhedral combinatorics. Originally known as the upper bound conjecture, this statement was formulated by Theodore Motzkin, proved in 1970 by Peter McMullen, and strengthened from polytopes to subdivisions of a sphere in 1975 by Richard P. Stanley. Cyclic polytopes The cyclic polytope \Delta(n,d) may be defined as the convex hull of n vertices on the moment curve, the set of d-dimensional points with coordinates (t,t^2,t^3,\dots). The precise choice of which n points on this curve are selected is irrelevant for the combinatorial structure of this polytope. The number of i-dimensional faces of \Delta(n,d) is given by the formula f_i(\Delta(n,d)) = \binom \quad \textrm \quad 0 \leq i < \left\lfloor\frac\right\rfloor and (f_0,\ldots,f_) com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


H-vector
In algebraic combinatorics, the ''h''-vector of a simplicial polytope is a fundamental Invariant (mathematics), invariant of the polytope which encodes the number of faces of different dimensions and allows one to express the Dehn–Sommerville equations in a particularly simple form. A characterization of the set of ''h''-vectors of simplicial polytopes was conjectured by Peter McMullen and proved by Louis Billera, Lou Billera and Carl W. Lee and Richard P. Stanley, Richard Stanley (g-theorem, ''g''-theorem). The definition of ''h''-vector applies to arbitrary abstract simplicial complexes. The g-conjecture, ''g''-conjecture stated that for simplicial spheres, all possible ''h''-vectors occur already among the ''h''-vectors of the boundaries of convex simplicial polytopes. It was proven in December 2018 by Karim Adiprasito. Stanley introduced a generalization of the ''h''-vector, the toric ''h''-vector, which is defined for an arbitrary ranked poset, and proved that for the class o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dehn–Sommerville Equations
In mathematics, the Dehn–Sommerville equations are a complete set of linear relations between the numbers of faces of different dimension of a simplicial polytope. For polytopes of dimension 4 and 5, they were found by Max Dehn in 1905. Their general form was established by Duncan Sommerville in 1927. The Dehn–Sommerville equations can be restated as a symmetry condition for the ''h''-vector of the simplicial polytope and this has become the standard formulation in recent combinatorics literature. By duality, analogous equations hold for simple polytopes. Statement Let ''P'' be a ''d''-dimensional simplicial polytope. For ''i'' = 0, 1, ..., ''d'' − 1, let ''f''''i'' denote the number of ''i''-dimensional faces of ''P''. The sequence : f(P)=(f_0,f_1,\ldots,f_) is called the ''f''-vector of the polytope ''P''. Additionally, set : f_=1, f_d=1. Then for any ''k'' = −1, 0, ..., ''d'' − 2, the following Dehn–Sommerville equation ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Steinitz's Theorem
In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedron, convex polyhedra: they are exactly the vertex connectivity, 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs. This result provides a classification theorem for the three-dimensional convex polyhedra, something that is not known in higher dimensions. It provides a complete and purely combinatorial description of the graphs of these polyhedra, allowing other results on them, such as Eberhard's theorem on the realization of polyhedra with given types of faces, to be proven more easily, without reference to the geometry of these shapes. Additionally, it has been applied in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Double Counting (proof Technique)
In combinatorics, double counting, also called counting in two ways, is a combinatorial proof technique for showing that two expressions are equal by demonstrating that they are two ways of counting the size of one set. In this technique, which call "one of the most important tools in combinatorics", one describes a finite set from two perspectives leading to two distinct expressions for the size of the set. Since both expressions equal the size of the same set, they equal each other. Examples Multiplication (of natural numbers) commutes This is a simple example of double counting, often used when teaching multiplication to young children. In this context, multiplication of natural numbers is introduced as repeated addition, and is then shown to be commutative by counting, in two different ways, a number of items arranged in a rectangular grid. Suppose the grid has n rows and m columns. We first count the items by summing n rows of m items each, then a second time by summing m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler Characteristic
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by \chi (Greek alphabet, Greek lower-case letter chi (letter), chi). The Euler characteristic was originally defined for polyhedron, polyhedra and used to prove various theorems about them, including the classification of the Platonic solids. It was stated for Platonic solids in 1537 in an unpublished manuscript by Francesco Maurolico. Leonhard Euler, for whom the concept is named, introduced it for convex polyhedra more generally but failed to rigorously prove that it is an invariant. In modern mathematics, the Euler characteristic arises from homology (mathematics), homology and, more abstractly, homological algebra. Polyhedra The Euler characteristic was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example, * a 0-dimensional simplex is a point, * a 1-dimensional simplex is a line segment, * a 2-dimensional simplex is a triangle, * a 3-dimensional simplex is a tetrahedron, and * a 4-dimensional simplex is a 5-cell. Specifically, a -simplex is a -dimensional polytope that is the convex hull of its vertices. More formally, suppose the points u_0, \dots, u_k are affinely independent, which means that the vectors u_1 - u_0,\dots, u_k-u_0 are linearly independent. Then, the simplex determined by them is the set of points C = \left\. A regular simplex is a simplex that is also a regular polytope. A regular -simplex may be constructed from a regular -simplex by connecting a new vertex to all original vertices by the common ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simplicial Polytope
In geometry, a simplicial polytope is a polytope whose facet_(mathematics), facets are all Simplex, simplices. For example, a ''simplicial polyhedron'' in three dimensions contains only Triangle, triangular facesPolyhedra, Peter R. Cromwell, 1997
(p.341) and corresponds via Steinitz's theorem to a maximal planar graph. They are Dual_polyhedron#Topological_duality, topologically dual to simple polytopes. Polytopes which are both simple and simplicial are either simplices or two-dimensional polygons.


Examples

Simplicial polyhedra include: * Bipyramids * Gyroelongated bipyramids *Deltahedron, Deltahedra (equilateral triangles) ** Platonic solid, Platonic *** tetrahedron, octahedron, icosahedron ** Johnson solids: ***triangular bipyramid, pentagonal bipyramid, snub disphenoid, triaugmented triangular prism, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unimodal
In mathematics, unimodality means possessing a unique mode. More generally, unimodality means there is only a single highest value, somehow defined, of some mathematical object. Unimodal probability distribution In statistics, a unimodal probability distribution or unimodal distribution is a probability distribution which has a single peak. The term "mode" in this context refers to any peak of the distribution, not just to the strict definition of mode which is usual in statistics. If there is a single mode, the distribution function is called "unimodal". If it has more modes it is "bimodal" (2), "trimodal" (3), etc., or in general, "multimodal". Figure 1 illustrates normal distributions, which are unimodal. Other examples of unimodal distributions include Cauchy distribution, Student's ''t''-distribution, chi-squared distribution and exponential distribution. Among discrete distributions, the binomial distribution and Poisson distribution can be seen as unimodal, thoug ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]