Upper Bound Theorem
   HOME
*





Upper Bound Theorem
In mathematics, the upper bound theorem states that cyclic polytopes have the largest possible number of faces among all convex polytopes with a given dimension and number of vertices. It is one of the central results of polyhedral combinatorics. Originally known as the upper bound conjecture, this statement was formulated by Theodore Motzkin, proved in 1970 by Peter McMullen, and strengthened from polytopes to subdivisions of a sphere in 1975 by Richard P. Stanley. Cyclic polytopes The cyclic polytope \Delta(n,d) may be defined as the convex hull of n vertices on the moment curve, the set of d-dimensional points with coordinates (t,t^2,t^3,\dots). The precise choice of which n points on this curve are selected is irrelevant for the combinatorial structure of this polytope. The number of i-dimensional faces of \Delta(n,d) is given by the formula f_i(\Delta(n,d)) = \binom \quad \textrm \quad 0 \leq i < \left\lfloor\frac\right\rfloor and (f_0,\ldots,f_) com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclic Polytope
In mathematics, a cyclic polytope, denoted ''C''(''n'',''d''), is a convex polytope formed as a convex hull of ''n'' distinct points on a rational normal curve in R''d'', where ''n'' is greater than ''d''. These polytopes were studied by Constantin Carathéodory, David Gale, Theodore Motzkin, Victor Klee, and others. They play an important role in polyhedral combinatorics: according to the upper bound theorem, proved by Peter McMullen and Richard P. Stanley, Richard Stanley, the boundary ''Δ''(''n'',''d'') of the cyclic polytope ''C''(''n'',''d'') maximizes the number ''f''''i'' of ''i''-dimensional faces among all simplicial spheres of dimension ''d'' − 1 with ''n'' vertices. Definition The moment curve in \mathbb^d is defined by :\mathbf:\mathbb \rightarrow \mathbb^d, \mathbf(t) := \begint,t^2,\ldots,t^d\end^T. The d-dimensional cyclic polytope with n vertices is the convex hull : C(n,d) := \mathbf\ of n > d \ge 2 distinct points \mathbf(t_i) with t_1 < t_2 < \ldots ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Polytope
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others''Mathematical Programming'', by Melvyn W. Jeter (1986) p. 68/ref> (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary. Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. In the influential textbooks of Grünbaum and Ziegler on the subject, as well as in many other texts in discrete geometry, convex polytopes are often simply called "polytopes". Grünbaum points out that this is solely to avoi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyhedral Combinatorics
Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas. Mathematicians in this area study the combinatorics of polytopes; for instance, they seek inequalities that describe the relations between the numbers of vertices, edges, and faces of higher dimensions in arbitrary polytopes or in certain important subclasses of polytopes, and study other combinatorial properties of polytopes such as their connectivity and diameter (number of steps needed to reach any vertex from any other vertex). Additionally, many computer scientists use the phrase “polyhedral combinatorics” to describe research into precise descriptions of the faces of certain specific polytopes (especially 0-1 polytopes, whose vertices are subsets of a hypercube) arising from integer progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Theodore Motzkin
Theodore Samuel Motzkin (26 March 1908 – 15 December 1970) was an Israeli-American mathematician. Biography Motzkin's father Leo Motzkin, a Ukrainian Jew, went to Berlin at the age of thirteen to study mathematics. He pursued university studies in the topic and was accepted as a graduate student by Leopold Kronecker, but left the field to work for the Zionist movement before finishing a dissertation. Motzkin grew up in Berlin and started studying mathematics at an early age as well, entering university when he was only 15. He received his Ph.D. in 1934 from the University of Basel under the supervision of Alexander Ostrowski for a thesis on the subject of linear programming (''Beiträge zur Theorie der linearen Ungleichungen'', "Contributions to the Theory of Linear Inequalities", 1936). In 1935, Motzkin was appointed to the Hebrew University in Jerusalem, contributing to the development of mathematical terminology in Hebrew. In 1936 he was an Invited Speaker at the Internat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peter McMullen
Peter McMullen (born 11 May 1942) is a British mathematician, a professor emeritus of mathematics at University College London. Education and career McMullen earned bachelor's and master's degrees from Trinity College, Cambridge, and studied at the University of Birmingham, where he received his doctorate in 1968. and taught at Western Washington University from 1968 to 1969. In 1978 he earned his Doctor of Science at University College London where he still works as a professor emeritus. In 2006 he was accepted as a corresponding member of the Austrian Academy of Sciences. Contributions McMullen is known for his work in polyhedral combinatorics and discrete geometry, and in particular for proving what was then called the upper bound conjecture and now is the upper bound theorem. This result states that cyclic polytopes have the maximum possible number of faces among all polytopes with a given dimension and number of vertices. McMullen also formulated the g-conjecture, later t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Richard P
Richard is a male given name. It originates, via Old French, from Frankish language, Old Frankish and is a Compound (linguistics), compound of the words descending from Proto-Germanic language, Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'strong in rule'. Nicknames include "Richie", "Dick (nickname), Dick", "Dickon", "Dickie (name), Dickie", "Rich (given name), Rich", "Rick (given name), Rick", "Rico (name), Rico", "Ricky (given name), Ricky", and more. Richard is a common English, German and French male name. It's also used in many more languages, particularly Germanic, such as Norwegian, Danish, Swedish, Icelandic, and Dutch, as well as other languages including Irish, Scottish, Welsh and Finnish. Richard is cognate with variants of the name in other European languages, such as the Swedish "Rickard", the Catalan "Ricard" and the Italian "Riccardo", among others (see comprehensive variant list below). People ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Hull
In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset. Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every compact convex set is the convex hull of its extreme points. The convex hull operator is an example of a closure operator, and every antimatroid can be represented by applying this closure operator to finite sets of points. The algorithmic problems of finding the convex hull of a finite set of points in the plane or other low-dimensional Euclidean spaces, and its dual problem of intersecting half-spaces, are fundamental problems of com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex (geometry)
In geometry, a vertex (in plural form: vertices or vertexes) is a point (geometry), point where two or more curves, line (geometry), lines, or edge (geometry), edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedron, polyhedra are vertices. Definition Of an angle The ''vertex'' of an angle is the point where two Line (mathematics)#Ray, rays begin or meet, where two line segments join or meet, where two lines intersect (cross), or any appropriate combination of rays, segments, and lines that result in two straight "sides" meeting at one place. :(3 vols.): (vol. 1), (vol. 2), (vol. 3). Of a polytope A vertex is a corner point of a polygon, polyhedron, or other higher-dimensional polytope, formed by the intersection (Euclidean geometry), intersection of Edge (geometry), edges, face (geometry), faces or facets of the object. In a polygon, a vertex is called "convex set, convex" if the internal an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moment Curve
In geometry, the moment curve is an algebraic curve in ''d''-dimensional Euclidean space given by the set of points with Cartesian coordinates of the form :\left( x, x^2, x^3, \dots, x^d \right). In the Euclidean plane, the moment curve is a parabola, and in three-dimensional space it is a twisted cubic. Its closure in projective space is the rational normal curve. Moment curves have been used for several applications in discrete geometry including cyclic polytopes, the no-three-in-line problem, and a geometric proof of the chromatic number of Kneser graphs. Properties Every hyperplane intersects the moment curve in a finite set of at most ''d'' points. If a hyperplane intersects the curve in exactly ''d'' points, then the curve crosses the hyperplane at each intersection point. Thus, every finite point set on the moment curve is in general linear position. Applications The convex hull of any finite set of points on the moment curve is a cyclic polytope. Cyclic polytopes have the l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dehn–Sommerville Equations
In mathematics, the Dehn–Sommerville equations are a complete set of linear relations between the numbers of faces of different dimension of a simplicial polytope. For polytopes of dimension 4 and 5, they were found by Max Dehn in 1905. Their general form was established by Duncan Sommerville in 1927. The Dehn–Sommerville equations can be restated as a symmetry condition for the ''h''-vector'' of the simplicial polytope and this has become the standard formulation in recent combinatorics literature. By duality, analogous equations hold for simple polytopes. Statement Let ''P'' be a ''d''-dimensional simplicial polytope. For ''i'' = 0, 1, ..., ''d'' − 1, let ''f''''i'' denote the number of ''i''-dimensional faces of ''P''. The sequence : f(P)=(f_0,f_1,\ldots,f_) is called the ''f''-vector of the polytope ''P''. Additionally, set : f_=1, f_d=1. Then for any ''k'' = −1, 0, ..., ''d'' − 2, the following Dehn–Sommerville equation ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neighborly Polytope
In geometry and polyhedral combinatorics, a -neighborly polytope is a convex polytope in which every set of or fewer vertices forms a face. For instance, a 2-neighborly polytope is a polytope in which every pair of vertices is connected by an edge, forming a complete graph. 2-neighborly polytopes with more than four vertices may exist only in spaces of four or more dimensions, and in general a -neighborly polytope (other than a simplex) requires a dimension of or more. A -simplex is -neighborly. A polytope is said to be neighborly, without specifying , if it is -neighborly for . If we exclude simplices, this is the maximum possible : in fact, every polytope that is -neighborly for some is a simplex. In a -neighborly polytope with , every 2-face must be a triangle, and in a -neighborly polytope with , every 3-face must be a tetrahedron. More generally, in any -neighborly polytope, all faces of dimension less than are simplices. The cyclic polytopes formed as the convex hul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




H-vector
In algebraic combinatorics, the ''h''-vector of a simplicial polytope is a fundamental invariant of the polytope which encodes the number of faces of different dimensions and allows one to express the Dehn–Sommerville equations in a particularly simple form. A characterization of the set of ''h''-vectors of simplicial polytopes was conjectured by Peter McMullen and proved by Lou Billera and Carl W. Lee and Richard Stanley ( ''g''-theorem). The definition of ''h''-vector applies to arbitrary abstract simplicial complexes. The ''g''-conjecture stated that for simplicial spheres, all possible ''h''-vectors occur already among the ''h''-vectors of the boundaries of convex simplicial polytopes. It was proven in December 2018 by Karim Adiprasito. Stanley introduced a generalization of the ''h''-vector, the toric ''h''-vector, which is defined for an arbitrary ranked poset, and proved that for the class of Eulerian posets, the Dehn–Sommerville equations continue to hold. A different ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]