Polyakov Formula
In differential geometry and mathematical physics (especially string theory), the Polyakov formula expresses the conformal variation of the zeta functional determinant of a Riemannian manifold. Proposed by Alexander Markovich Polyakov this formula arose in the study of the quantum theory of strings. The corresponding density is local, and therefore is a Riemannian curvature invariant. In particular, whereas the functional determinant In functional analysis, a branch of mathematics, it is sometimes possible to generalize the notion of the determinant of a square matrix of finite order (representing a linear transformation from a finite-dimensional vector space to itself) to the i ... itself is prohibitively difficult to work with in general, its conformal variation can be written down explicitly. References * * Conformal geometry Spectral theory String theory {{geometry-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Physics
Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics (also known as physical mathematics). Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. Classical mechanics The rigorous, abstract and advanced reformulation of Newtonian mechanics adopting the Lagrangian mechanics and the Hamiltonian mechanics even in the presence of constraints. Both formulations are embodied in analytical mechanics and lead to understanding the deep interplay of the notions of symmetry (physics), symmetry and conservation law, con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
String Theory
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity. String theory is a broad and varied subject that attempts to address a number of deep questions of fundamental physics. String theory has contributed a number of advances to mathematical physics, which have been applied to a variety of problems in black hole physics, early universe cosmology, nuclear physics, and conde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conformal Geometry
In mathematics, conformal geometry is the study of the set of angle-preserving ( conformal) transformations on a space. In a real two dimensional space, conformal geometry is precisely the geometry of Riemann surfaces. In space higher than two dimensions, conformal geometry may refer either to the study of conformal transformations of what are called "flat spaces" (such as Euclidean spaces or spheres), or to the study of conformal manifolds which are Riemannian or pseudo-Riemannian manifolds with a class of metrics that are defined up to scale. Study of the flat structures is sometimes termed Möbius geometry, and is a type of Klein geometry. Conformal manifolds A conformal manifold is a pseudo-Riemannian manifold equipped with an equivalence class of metric tensors, in which two metrics ''g'' and ''h'' are equivalent if and only if :h = \lambda^2 g , where ''λ'' is a real-valued smooth function defined on the manifold and is called the conformal factor. An equivalence cla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Calculus Of Variation
The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist. Such solutions are known as '' geodesics''. A related problem is posed by Fermat's principle: light follows the path of shortest optical length connecting two points, which depends u ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minakshisundaram–Pleijel Zeta Function
The Minakshisundaram–Pleijel zeta function is a zeta function encoding the eigenvalues of the Laplacian of a compact Riemannian manifold. It was introduced by . The case of a compact region of the plane was treated earlier by . Definition For a compact Riemannian manifold ''M'' of dimension ''N'' with eigenvalues \lambda_1, \lambda_2, \ldots of the Laplace–Beltrami operator \Delta, the zeta function is given for \operatorname(s) sufficiently large by : Z(s) = \mbox(\Delta^) = \sum_^ \vert \lambda_ \vert^. (where if an eigenvalue is zero it is omitted in the sum). The manifold may have a boundary, in which case one has to prescribe suitable boundary conditions, such as Dirichlet or Neumann boundary conditions. More generally one can define : Z(P, Q, s) = \sum_^ \frac for ''P'' and ''Q'' on the manifold, where the f_n are normalized eigenfunctions. This can be analytically continued to a meromorphic function of ''s'' for all complex ''s'', and is holomorphic for P\ne Q. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemannian Manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ''g''''p'' on the tangent space ''T''''p''''M'' at each point ''p''. The family ''g''''p'' of inner products is called a metric tensor, Riemannian metric (or Riemannian metric tensor). Riemannian geometry is the study of Riemannian manifolds. A common convention is to take ''g'' to be Smoothness, smooth, which means that for any smooth coordinate chart on ''M'', the ''n''2 functions :g\left(\frac,\frac\right):U\to\mathbb are smooth functions. These functions are commonly designated as g_. With further restrictions on the g_, one could also consider Lipschitz continuity, Lipschitz Riemannian metrics or Measurable function, measurable Riemannian metrics, among many other possibilities. A Riemannian metric (tensor) makes it possible to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alexander Markovich Polyakov
Alexander is a male given name. The most prominent bearer of the name is Alexander the Great, the king of the Ancient Greek kingdom of Macedonia who created one of the largest empires in ancient history. Variants listed here are Aleksandar, Aleksander and Aleksandr. Related names and diminutives include Iskandar, Alec, Alek, Alex, Alexandre, Aleks, Aleksa and Sander; feminine forms include Alexandra, Alexandria, and Sasha. Etymology The name ''Alexander'' originates from the (; 'defending men' or 'protector of men'). It is a compound of the verb (; 'to ward off, avert, defend') and the noun (, genitive: , ; meaning 'man'). It is an example of the widespread motif of Greek names expressing "battle-prowess", in this case the ability to withstand or push back an enemy battle line. The earliest attested form of the name, is the Mycenaean Greek feminine anthroponym , , (/Alexandra/), written in the Linear B syllabic script. Alaksandu, alternatively called ''Alakasandu'' or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Curvature Invariant
In Riemannian geometry and pseudo-Riemannian geometry, curvature invariants are scalar quantities constructed from tensors that represent curvature. These tensors are usually the Riemann tensor, the Weyl tensor, the Ricci tensor and tensors formed from these by the operations of taking dual contractions and covariant differentiations. Types of curvature invariants The invariants most often considered are ''polynomial invariants''. These are polynomials constructed from contractions such as traces. Second degree examples are called ''quadratic invariants'', and so forth. Invariants constructed using covariant derivatives up to order n are called n-th order ''differential invariants''. The Riemann tensor is a multilinear operator of fourth rank acting on tangent vectors. However, it can also be considered a linear operator acting on bivectors, and as such it has a characteristic polynomial, whose coefficients and roots (eigenvalues) are polynomial scalar invariants. Physi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functional Determinant
In functional analysis, a branch of mathematics, it is sometimes possible to generalize the notion of the determinant of a square matrix of finite order (representing a linear transformation from a finite-dimensional vector space to itself) to the infinite-dimensional case of a linear operator ''S'' mapping a function space ''V'' to itself. The corresponding quantity det(''S'') is called the functional determinant of ''S''. There are several formulas for the functional determinant. They are all based on the fact that the determinant of a finite matrix is equal to the product of the eigenvalues of the matrix. A mathematically rigorous definition is via the zeta function of the operator, : \zeta_S(a) = \operatorname\, S^ \,, where tr stands for the functional trace: the determinant is then defined by : \det S = e^ \,, where the zeta function in the point ''s'' = 0 is defined by analytic continuation. Another possible generalization, often used by physicists when using the Feynman ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conformal Geometry
In mathematics, conformal geometry is the study of the set of angle-preserving ( conformal) transformations on a space. In a real two dimensional space, conformal geometry is precisely the geometry of Riemann surfaces. In space higher than two dimensions, conformal geometry may refer either to the study of conformal transformations of what are called "flat spaces" (such as Euclidean spaces or spheres), or to the study of conformal manifolds which are Riemannian or pseudo-Riemannian manifolds with a class of metrics that are defined up to scale. Study of the flat structures is sometimes termed Möbius geometry, and is a type of Klein geometry. Conformal manifolds A conformal manifold is a pseudo-Riemannian manifold equipped with an equivalence class of metric tensors, in which two metrics ''g'' and ''h'' are equivalent if and only if :h = \lambda^2 g , where ''λ'' is a real-valued smooth function defined on the manifold and is called the conformal factor. An equivalence cla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spectral Theory
In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter. Mathematical background The name ''spectral theory'' was introduced by David Hilbert in his original formulation of Hilbert space theory, which was cast in terms of quadratic forms in infinitely many variables. The original spectral theorem was therefore conceived as a version of the theorem on principal axes of an ellipsoid, in an infinite-dimensional setting. The later discovery in quantum mechanics that spectral theory could explain features of atomic spectra was therefore ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |