HOME
*





Curvature Invariant
In Riemannian geometry and pseudo-Riemannian geometry, curvature invariants are scalar quantities constructed from tensors that represent curvature. These tensors are usually the Riemann tensor, the Weyl tensor, the Ricci tensor and tensors formed from these by the operations of taking dual contractions and covariant differentiations. Types of curvature invariants The invariants most often considered are ''polynomial invariants''. These are polynomials constructed from contractions such as traces. Second degree examples are called ''quadratic invariants'', and so forth. Invariants constructed using covariant derivatives up to order n are called n-th order ''differential invariants''. The Riemann tensor is a multilinear operator of fourth rank acting on tangent vectors. However, it can also be considered a linear operator acting on bivectors, and as such it has a characteristic polynomial, whose coefficients and roots (eigenvalues) are polynomial scalar invariants. Phys ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemannian Geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to point. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions. Riemannian geometry originated with the vision of Bernhard Riemann expressed in his inaugural lecture "''Ueber die Hypothesen, welche der Geometrie zu Grunde liegen''" ("On the Hypotheses on which Geometry is Based.") It is a very broad and abstract generalization of the differential geometry of surfaces in R3. Development of Riemannian geometry resulted in synthesis of diverse results concerning the geometry of surfaces and the behavior of geodesics on them, with techniques that can be applied to the study of differentiable manifolds of higher ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic Polynomial
In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The characteristic polynomial of an endomorphism of a finite-dimensional vector space is the characteristic polynomial of the matrix of that endomorphism over any base (that is, the characteristic polynomial does not depend on the choice of a basis). The characteristic equation, also known as the determinantal equation, is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory, the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix. Motivation In linear algebra, eigenvalues and eigenvectors play a fundamental role, since, given a linear transformation, an eigenvector is a vector whose direction is not changed by the transformation, and the corresponding ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carminati–McLenaghan Invariants
In general relativity, the Carminati–McLenaghan invariants or CM scalars are a set of 16 scalar curvature invariants for the Riemann tensor. This set is usually supplemented with at least two additional invariants. Mathematical definition The CM invariants consist of 6 real scalars plus 5 complex scalars, making a total of 16 invariants. They are defined in terms of the Weyl tensor C_ and its right (or left) dual _=(1/2)\epsilon_C_^, the Ricci tensor R_, and the ''trace-free Ricci tensor'' : S_ = R_ - \frac \, R \, g_ In the following, it may be helpful to note that if we regard _b as a matrix, then _m \, _b is the ''square'' of this matrix, so the ''trace'' of the square is _b \, _a, and so forth. The real CM scalars are: #R = _m (the trace of the Ricci tensor) #R_1 = \frac \, _b \, _a #R_2 = -\frac \, _b \, _c \, _a #R_3 = \frac \, _b \, _c \, _d \, _a #M_3 = \frac \, S^ \, S_ \left( C_ \, C^ + _ \, ^ \right) #M_4 = -\frac \, S^ \, S^ \, _d \, \left( ^ \, C_ + ^ \, _ \rig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cartan–Karlhede Algorithm
The Cartan–Karlhede algorithm is a procedure for completely classifying and comparing Riemannian manifolds. Given two Riemannian manifolds of the same dimension, it is not always obvious whether they are locally isometric. Élie Cartan, using his exterior calculus with his method of moving frames, showed that it is always possible to compare the manifolds. Carl Brans developed the method further, and the first practical implementation was presented by in 1980. The main strategy of the algorithm is to take covariant derivatives of the Riemann tensor. Cartan showed that in ''n'' dimensions at most ''n''(''n''+1)/2 differentiations suffice. If the Riemann tensor and its derivatives of the one manifold are algebraically compatible with the other, then the two manifolds are isometric. The Cartan–Karlhede algorithm therefore acts as a kind of generalization of the Petrov classification. The potentially large number of derivatives can be computationally prohibitive. The algori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minkowski Spacetime
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inertial frame of reference in which they are recorded. Although initially developed by mathematician Hermann Minkowski for Maxwell's equations of electromagnetism, the mathematical structure of Minkowski spacetime was shown to be implied by the postulates of special relativity. Minkowski space is closely associated with Einstein's theories of special relativity and general relativity and is the most common mathematical structure on which special relativity is formulated. While the individual components in Euclidean space and time may differ due to length contraction and time dilation, in Minkowski spacetime, all frames of reference will agree on the total distance in spacetime between events.This makes spacetime distance an invar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


VSI Spacetime
In mathematical physics, vanishing scalar invariant (VSI) spacetimes are Lorentzian manifolds with all polynomial curvature invariants of all orders vanishing. Although the only Riemannian manifold with VSI property is flat space, the Lorentzian case admits nontrivial spacetimes with this property. Distinguishing these VSI spacetimes from Minkowski spacetime requires comparing non-polynomial invariants or carrying out the full Cartan–Karlhede algorithm on non-scalar quantities. All VSI spacetimes are Kundt spacetimes. An example with this property in four dimensions is a pp-wave. VSI spacetimes however also contain some other four-dimensional Kundt spacetimes of Petrov type In differential geometry and theoretical physics, the Petrov classification (also known as Petrov–Pirani–Penrose classification) describes the possible algebraic symmetries of the Weyl tensor at each event in a Lorentzian manifold. It is mos ... N and III. VSI spacetimes in higher dimensions have s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Syzygy (mathematics)
In linear algebra, a linear relation, or simply relation, between elements of a vector space or a module is a linear equation that has these elements as a solution. More precisely, if e_1,\dots,e_n are elements of a (left) module over a ring (the case of a vector space over a field is a special case), a relation between e_1,\dots,e_n is a sequence (f_1,\dots, f_n) of elements of such that :f_1e_1+\dots+f_ne_n=0. The relations between e_1,\dots,e_n form a module. One is generally interested in the case where e_1,\dots,e_n is a generating set of a finitely generated module , in which case the module of the relations is often called a syzygy module of . The syzygy module depends on the choice of a generating set, but it is unique up to the direct sum with a free module. That is, if S_1 and S_2 are syzygy modules corresponding to two generating sets of the same module, then they are stably isomorphic, which means that there exist two free modules L_1 and L_2 such that S_1\opl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Basis (linear Algebra)
In mathematics, a set of vectors in a vector space is called a basis if every element of may be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to . The elements of a basis are called . Equivalently, a set is a basis if its elements are linearly independent and every element of is a linear combination of elements of . In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the ''dimension'' of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Definition A basis of a vector space over a field (such as the real numbers or the complex numbers ) is a linearly independent subset of that spans . Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electromagnetic Field Tensor
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below. Definition The electromagnetic tensor, conventionally labelled ''F'', is defined as the exterior derivative of the electromagnetic four-potential, ''A'', a differential 1-form: :F \ \stackrel\ \mathrmA. Therefore, ''F'' is a differential 2-form—that is, an antisymmetric rank-2 tensor field—on Minkowski space. In component form, :F_ = \partial_\mu A_\nu - \partial_\nu A_\mu. where \partial is the four-gradient and A is the f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Curvature Invariant (general Relativity)
In general relativity, curvature invariants are a set of scalars formed from the Riemann, Weyl and Ricci tensors - which represent curvature, hence the name, - and possibly operations on them such as contraction, covariant differentiation and dualisation. Certain invariants formed from these curvature tensors play an important role in classifying spacetimes. Invariants are actually less powerful for distinguishing locally non- isometric Lorentzian manifolds than they are for distinguishing Riemannian manifolds. This means that they are more limited in their applications than for manifolds endowed with a positive definite metric tensor. Principal invariants The principal invariants of the Riemann and Weyl tensors are certain quadratic polynomial invariants (i.e., sums of squares of components). The principal invariants of the Riemann tensor of a four-dimensional Lorentzian manifold are #the ''Kretschmann scalar'' K_1 = R_ \, R^ #the ''Chern–Pontryagin scalar'' K_2 = _ \, R^ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the ' is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations. Newton's law of universal gravitation, which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metric Theory Of Gravitation
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study. It may loosely be thought of as a generalization of the gravitational potential of Newtonian gravitation. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past. Notation and conventions Throughout this article we work with a metric signature that is mostly positive (); see sign convention. The gravitation constant G will be kept explicit. This article employs the Einstein summation convention, where repeated indices are automatically summed over. Definition Mathematically, spacetime is represented by a four-dimensional differentiable manifold M and the metric tensor is given as a covariant, second-degree, symmetric tensor on M, conventionally denoted by g. Moreover, the metric is required to be nondeg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]