Poincaré–Birkhoff–Witt Theorem
In mathematics, more specifically in the theory of Lie algebras, the Poincaré–Birkhoff–Witt theorem (or PBW theorem) is a result giving an explicit description of the universal enveloping algebra of a Lie algebra. It is named after Henri Poincaré, Garrett Birkhoff, and Ernst Witt. The terms ''PBW type theorem'' and ''PBW theorem'' may also refer to various analogues of the original theorem, comparing a filtered algebra to its associated graded algebra, in particular in the area of quantum groups. Statement of the theorem Recall that any vector space ''V'' over a field has a basis; this is a set ''S'' such that any element of ''V'' is a unique (finite) linear combination of elements of ''S''. In the formulation of Poincaré–Birkhoff–Witt theorem we consider bases of which the elements are totally ordered by some relation which we denote ≤. If ''L'' is a Lie algebra over a field K, let ''h'' denote the canonical K-linear map from ''L'' into the universal envelop ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symmetric Algebra
In mathematics, the symmetric algebra (also denoted on a vector space over a field is a commutative algebra over that contains , and is, in some sense, minimal for this property. Here, "minimal" means that satisfies the following universal property: for every linear map from to a commutative algebra , there is a unique algebra homomorphism such that , where is the inclusion map of in . If is a basis of , the symmetric algebra can be identified, through a canonical isomorphism, to the polynomial ring , where the elements of are considered as indeterminates. Therefore, the symmetric algebra over can be viewed as a "coordinate free" polynomial ring over . The symmetric algebra can be built as the quotient of the tensor algebra by the two-sided ideal generated by the elements of the form . All these definitions and properties extend naturally to the case where is a module (not necessarily a free one) over a commutative ring. Construction From tensor algebra It ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anthony W
Anthony, also spelled Antony, is a masculine given name derived from the ''Antonii'', a ''gens'' ( Roman family name) to which Mark Antony (''Marcus Antonius'') belonged. According to Plutarch, the Antonii gens were Heracleidae, being descendants of Anton, a son of Heracles. Anthony is an English name that is in use in many countries. It has been among the top 100 most popular male baby names in the United States since the late 19th century and has been among the top 100 male baby names between 1998 and 2018 in many countries including Canada, Australia, England, Ireland and Scotland. Equivalents include ''Antonio'' in Italian, Spanish, Portuguese and Maltese; ''Αντώνιος'' in Greek; ''António'' or ''Antônio'' in Portuguese; ''Antoni'' in Catalan, Polish, and Slovene; '' Anton'' in Dutch, Galician, German, Icelandic, Romanian, Russian, and Scandinavian languages; ''Antoine'' in French; '' Antal'' in Hungarian; and '' Antun'' or '' Ante'' in Croatian. The usual abbreviate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nicolas Bourbaki
Nicolas Bourbaki () is the collective pseudonym of a group of mathematicians, predominantly French alumni of the École normale supérieure (Paris), École normale supérieure (ENS). Founded in 1934–1935, the Bourbaki group originally intended to prepare a new textbook in mathematical analysis, analysis. Over time the project became much more ambitious, growing into a large series of textbooks published under the Bourbaki name, meant to treat modern pure mathematics. The series is known collectively as the ''Éléments de mathématique'' (''Elements of Mathematics''), the group's central work. Topics treated in the series include set theory, abstract algebra, topology, analysis, Lie groups, and Lie algebras. Bourbaki was founded in response to the effects of the First World War which caused the death of a generation of French mathematicians; as a result, young university instructors were forced to use dated texts. While teaching at the University of Strasbourg, Henri Cartan co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Samuel Eilenberg
Samuel Eilenberg (September 30, 1913 – January 30, 1998) was a Polish-American mathematician who co-founded category theory (with Saunders Mac Lane) and homological algebra. Early life and education He was born in Warsaw, Kingdom of Poland to a Jewish family. He spent much of his career as a professor at Columbia University. He earned his Ph.D. from University of Warsaw in 1936, with thesis ''On the Topological Applications of Maps onto a Circle''; his thesis advisors were Kazimierz Kuratowski and Karol Borsuk. He died in New York City in January 1998. Career Eilenberg's main body of work was in algebraic topology. He worked on the axiomatic treatment of homology theory with Norman Steenrod (and the Eilenberg–Steenrod axioms are named for the pair), and on homological algebra with Saunders Mac Lane. As a result of this work, Eilenberg and Mac Lane developed the field of category theory, for which they are now best known. Eilenberg was a member of Bourbaki and, with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Henri Cartan
Henri Paul Cartan (; 8 July 1904 – 13 August 2008) was a French mathematician who made substantial contributions to algebraic topology. He was the son of the mathematician Élie Cartan, nephew of mathematician Anna Cartan, oldest brother of composer , physicist and mathematician , and the son-in-law of physicist Pierre Weiss. Life According to his own words, Henri Cartan was interested in mathematics at a very young age, without being influenced by his family. He moved to Paris with his family after his father's appointment at Sorbonne in 1909 and he attended secondary school at Lycée Hoche in Versailles. available also at In 1923 he started studying mathematics at École Normale Supérieure, receiving an agrégation in 1926 and a doctorate in 1928. His PhD thesis, entitled ''Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications'', was supervised by Paul Montel. Cartan taught at Lycée Malherbe in Caen from 1928 to 1929, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Armand Borel
Armand Borel (21 May 1923 – 11 August 2003) was a Swiss mathematician, born in La Chaux-de-Fonds, and was a permanent professor at the Institute for Advanced Study in Princeton, New Jersey, United States from 1957 to 1993. He worked in algebraic topology, in the theory of Lie groups, and was one of the creators of the contemporary theory of linear algebraic groups. Biography He studied at the ETH Zürich, where he came under the influence of the topologist Heinz Hopf and Lie-group theorist Eduard Stiefel. He was in Paris from 1949: he applied the Leray spectral sequence to the topology of Lie groups and their classifying spaces, under the influence of Jean Leray and Henri Cartan. With Hirzebruch, he significantly developed the theory of characteristic classes in the early 1950s. He collaborated with Jacques Tits in fundamental work on algebraic groups, and with Harish-Chandra on their arithmetic subgroups. In an algebraic group ''G'' a '' Borel subgroup'' ''H'' is one ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
General Linear Group
In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with the identity matrix as the identity element of the group. The group is so named because the columns (and also the rows) of an invertible matrix are linearly independent, hence the vectors/points they define are in general linear position, and matrices in the general linear group take points in general linear position to points in general linear position. To be more precise, it is necessary to specify what kind of objects may appear in the entries of the matrix. For example, the general linear group over \R (the set of real numbers) is the group of n\times n invertible matrices of real numbers, and is denoted by \operatorname_n(\R) or \operatorname(n,\R). More generally ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alfredo Capelli
Alfredo Capelli (5 August 1855 – 28 January 1910) was an Italian mathematician who discovered Capelli's identity. Biography Capelli earned his Laurea from the University of Rome in 1877 under Giuseppe Battaglini, and moved to the University of Pavia where he worked as an assistant for Felice Casorati. In 1881 he became the professor of Algebraic Analysis at the University of Palermo, replacing Cesare Arzelà who had recently moved to Bologna. In 1886, he moved again to the University of Naples, where he held the chair in algebra. He remained at Naples until his death in 1910. As well as being professor there, Capelli was editor of the ''Giornale di Matematiche di Battaglini'' from 1894 to 1910, and was elected to the Accademia dei Lincei The (; literally the "Academy of the Lynx-Eyed"), anglicised as the Lincean Academy, is one of the oldest and most prestigious European scientific institutions, located at the Palazzo Corsini on the Via della Lungara in Rome, Italy. F ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coalgebra
In mathematics, coalgebras or cogebras are structures that are dual (in the category-theoretic sense of reversing arrows) to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by (vector space) duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions ( see below). Coalgebras occur naturally in a number of contexts (for example, representation theory, universal enveloping algebras and group schemes). There are also F-coalgebras, with important applications in computer science. Informal discussion One frequently recurring example of coalgebras occurs in representation theory, and in particular, in the representation theory of the rotation group. A primary task, of practical use in physics, is to obtain combinations of systems with different states of ang ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dedekind Domain
In mathematics, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below. A field is a commutative ring in which there are no nontrivial proper ideals, so that any field is a Dedekind domain, however in a rather vacuous way. Some authors add the requirement that a Dedekind domain not be a field. Many more authors state theorems for Dedekind domains with the implicit proviso that they may require trivial modifications for the case of fields. An immediate consequence of the definition is that every principal ideal domain (PID) is a Dedekind domain. In fact a Dedekind domain is a unique factorization domain (UFD) if and only if it is a PID. The ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after the Norwegian mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation ・ , that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The sym ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |