Peroxisome Proliferator-activated Receptor γ
Peroxisome proliferator- activated receptor gamma (PPAR-γ or PPARG), also known as the glitazone reverse insulin resistance receptor, or NR1C3 (nuclear receptor subfamily 1, group C, member 3) is a type II nuclear receptor functioning as a transcription factor that in humans is encoded by the ''PPARG'' gene. Tissue distribution PPARG is mainly present in adipose tissue, colon and macrophages. Two isoforms of PPARG are detected in the human and in the mouse: PPAR-γ1 (found in nearly all tissues except muscle) and PPAR-γ2 (mostly found in adipose tissue and the intestine). Gene expression This gene encodes a member of the peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear receptors. PPARs form heterodimers with retinoid X receptors (RXRs) and these heterodimers regulate transcription of various genes. Three subtypes of PPARs are known: PPAR-alpha, PPAR-delta, and PPAR-gamma. The protein encoded by this gene is PPAR-gamma and is a regulator of adipocyte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nuclear Receptor
In the field of molecular biology, nuclear receptors are a class of proteins responsible for sensing steroids, thyroid hormones, vitamins, and certain other molecules. These receptors work with other proteins to regulate the expression of specific genes thereby controlling the development, homeostasis, and metabolism of the organism. Nuclear receptors bind directly to DNA regulating the expression of adjacent genes; hence these receptors are classified as transcription factors. The regulation of gene expression by nuclear receptors often occurs in the presence of a ligand—a molecule that affects the receptor's behavior. Ligand binding to a nuclear receptor results in a conformational change activating the receptor. The result is up- or down-regulation of gene expression. A unique property of nuclear receptors that differentiates them from other classes of receptors is their direct control of genomic DNA. Nuclear receptors play key roles in both embryonic development a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Downregulation And Upregulation
In the biological context of organisms' production of gene products, downregulation is the process by which a cell decreases the quantity of a cellular component, such as RNA or protein, in response to an external stimulus. The complementary process that involves increases of such components is called upregulation. An example of downregulation is the cellular decrease in the expression of a specific receptor in response to its increased activation by a molecule, such as a hormone or neurotransmitter, which reduces the cell's sensitivity to the molecule. This is an example of a locally acting (negative feedback) mechanism. An example of upregulation is the response of liver cells exposed to such xenobiotic molecules as dioxin. In this situation, the cells increase their production of cytochrome P450 enzymes, which in turn increases degradation of these dioxin molecules. Downregulation or upregulation of an RNA or protein may also arise by an epigenetic alteration. Such an epigene ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
11-Nor-9-carboxy-THC
11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (11-COOH-THC or THC-COOH), often referred to as 11-nor-9-carboxy-THC or THC-11-oic acid, is the main secondary metabolite of tetrahydrocannabinol (THC) which is formed in the body after cannabis is consumed. Metabolism and detection 11-COOH-THC is formed in the body by oxidation of the active metabolite 11-hydroxy-THC (11-OH-THC) by liver enzymes. It is then metabolized further by conjugation with glucuronide, forming a water-soluble congener which can be more easily excreted by the body. 11-COOH-THC has a long half-life in the body of up to several days (or even weeks in very heavy users), making it the main metabolite tested for blood or urine testing for cannabis use. More selective tests are able to distinguish between 11-OH-THC and 11-COOH-THC, which can help determine how recently cannabis was consumed; if only 11-COOH-THC is present then cannabis was used some time ago and any impairment in cognitive ability or motor function wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tetrahydrocannabinol
Tetrahydrocannabinol (THC) is the principal psychoactive constituent of cannabis and one of at least 113 total cannabinoids identified on the plant. Although the chemical formula for THC (C21H30O2) describes multiple isomers, the term ''THC'' usually refers to the Delta-9-THC isomer with chemical name (−)-''trans''-Δ9-tetrahydrocannabinol. THC is a lipid found in cannabis and, like most pharmacologically active secondary metabolites of plants, it is assumed to be involved in the plant's evolutionary adaptation, putatively against insect predation, ultraviolet light, and environmental stress. THC was first discovered and isolated by Israeli chemist Raphael Mechoulam in Israel in 1964. It was found that, when smoked, THC is absorbed into the bloodstream and travels to the brain, attaching itself to endocannabinoid receptors located in the cerebral cortex, cerebellum, and basal ganglia. These are the parts of the brain responsible for thinking, memory, pleasure, coordination a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cannabinoid
Cannabinoids () are several structural classes of compounds found in the cannabis plant primarily and most animal organisms (although insects lack such receptors) or as synthetic compounds. The most notable cannabinoid is the phytocannabinoid tetrahydrocannabinol (THC) (delta-9-THC), the primary intoxicating compound in cannabis. Cannabidiol (CBD) is a major constituent of temperate Cannabis plants and a minor constituent in tropical varieties. At least 113 distinct phytocannabinoids have been isolated from cannabis, although only four (i.e., THCA, CBDA, CBCA and their common precursor CBGA) have been demonstrated to have a biogenetic origin. It was reported in 2020 that phytocannabinoids can be found in other plants such as rhododendron, licorice and liverwort, and earlier in Echinacea. Phytocannabinoids are multi-ring phenolic compounds structurally related to THC, but endocannabinoids are fatty acid derivatives. Nonclassical synthetic cannabinoids (cannabimimetics) include amin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
15-hydroxyicosatetraenoic Acid
15-Hydroxyeicosatetraenoic acid (also termed 15-HETE, 15(''S'')-HETE, and 15''S''-HETE) is an eicosanoid, i.e. a metabolite of arachidonic acid. Various cell types metabolize arachidonic acid to 15(''S'')-hydroperoxyeicosatetraenoic acid (15(''S'')-HpETE). This initial hydroperoxide product is extremely short-lived in cells: if not otherwise metabolized, it is rapidly reduced to 15''(S)''-HETE. Both of these metabolites, depending on the cell type which forms them, can be further metabolized to 15-oxo-eicosatetraenoic acid (15-oxo-ETE), 5''S'',15''S''-dihydroxy-eicosatetraenoic acid (5(''S''),15(''S'')-diHETE), 5-oxo-15(''S'')-hydroxyeicosatetraenoic acid (5-oxo-15(''S'')-HETE, a subset of specialized pro-resolving mediators viz., the lipoxins, a class of pro-inflammatory mediators, the eoxins, and other products that have less well-defined activities and functions. Thus, 15(''S'')-HETE and 15(''S'')-HpETE, in addition to having intrinsic biological activities, are key precursors t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arachidonic Acid
Arachidonic acid (AA, sometimes ARA) is a polyunsaturated omega-6 fatty acid 20:4(ω-6), or 20:4(5,8,11,14). It is structurally related to the saturated arachidic acid found in cupuaçu butter. Its name derives from the New Latin word ''arachis'' (peanut), but peanut oil does not contain any arachidonic acid. Chemistry In chemical structure, arachidonic acid is a carboxylic acid with a 20-carbon chain and four ''cis''-double bonds; the first double bond is located at the sixth carbon from the omega end. Some chemistry sources define 'arachidonic acid' to designate any of the eicosatetraenoic acids. However, almost all writings in biology, medicine, and nutrition limit the term to ''all cis''-5,8,11,14-eicosatetraenoic acid. Biology Arachidonic acid is a polyunsaturated fatty acid present in the phospholipids (especially phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositides) of membranes of the body's cells, and is abundant in the brain, muscles, an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polyunsaturated Fatty Acids
Polyunsaturated fatty acids (PUFAs) are fatty acids that contain more than one double bond in their backbone. This class includes many important compounds, such as essential fatty acids and those that give drying oils their characteristic property. Polyunsaturated fatty acids can be classified in various groups by their chemical structure: * methylene-interrupted polyenes * conjugated fatty acids * other PUFAs Based on the length of their carbon backbone, they are sometimes classified in two groups: * short chain polyunsaturated fatty acids (SC-PUFA), with 18 carbon atoms * long-chain polyunsaturated fatty acids (LC-PUFA) with 20 or more carbon atoms Dietary sources Types Methylene-interrupted polyenes These fatty acids have 2 or more ''cis'' double bonds that are separated from each other by a single methylene bridge (--). This form is also sometimes called a ''divinylmethane pattern''. The essential fatty acids are all omega-3 and -6 methylene-interrupted fatty ac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Liver X Receptor
The liver X receptor (LXR) is a member of the nuclear receptor family of transcription factors and is closely related to nuclear receptors such as the PPARs, FXR and RXR. Liver X receptors (LXRs) are important regulators of cholesterol, fatty acid, and glucose homeostasis. LXRs were earlier classified as orphan nuclear receptors, however, upon discovery of endogenous oxysterols as ligands they were subsequently deorphanized. Two isoforms of LXR have been identified and are referred to as LXRα and LXRβ. The liver X receptors are classified into subfamily 1 (thyroid hormone receptor-like) of the nuclear receptor superfamily, and are given the nuclear receptor nomenclature symbols NR1H3 (LXRα) and NR1H2 (LXRβ) respectively. LXRα and LXRβ were discovered separately between 1994-1995. LXRα isoform was independently identified by two groups and initially named RLD-1 and LXR, whereas four groups identified the LXRβ isoform and called it UR, NER, OR-1, and RIP-15. The h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reverse Cholesterol Transport
Reverse cholesterol transport is a multi-step process resulting in the net movement of cholesterol from peripheral tissues back to the liver first via entering the lymphatic system, then the bloodstream. Cholesterol from non-hepatic peripheral tissues is transferred to HDL by the ABCA1 (ATP-binding cassette transporter). Apolipoprotein A1 (ApoA-1), the major protein component of HDL, acts as an acceptor, and the phospholipid component of HDL acts as a sink for the mobilised cholesterol. The cholesterol is converted to cholesteryl esters by the enzyme LCAT ( lecithin-cholesterol acyltransferase). The cholesteryl esters can be transferred, with the help of CETP ( cholesterylester transfer protein) in exchange for triglycerides, to other lipoproteins (such as LDL and VLDL), and these lipoproteins can be taken up by secreting unesterified cholesterol into the bile or by converting cholesterol to bile acids. Adiponectin induces ABCA1-mediated reverse cholesterol transport from macrop ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ABCA1
ATP-binding cassette transporter ABCA1 (member 1 of human transporter sub-family ABCA), also known as the ''cholesterol efflux regulatory protein'' (CERP) is a protein which in humans is encoded by the ''ABCA1'' gene. This transporter is a major regulator of cellular cholesterol and phospholipid homeostasis. Tangier disease It was discovered that a mutation in the ABCA1 protein is responsible for causing Tangier disease by several groups in 1998. Gerd Schmitz's group in Germany and Michael Hayden's group in British Columbia were using standard genetics techniques and DNA from family pedigrees to locate the mutation. Richard Lawn's group at CV Therapeutics in Palo Alto, CA used cDNA microarrays, which were relatively new at the time, to assess gene expression profiles from cell lines created from normal and affected individuals. They showed cell lines from patients with Tangier's disease showed differential regulation of the ABCA1 gene. Subsequent sequencing of the gene identifie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |