HOME
*



picture info

Perfluorocycloalkene
A perfluorocycloalkene (PFCA) fluorocarbon structure with a cycloalkene core. PFCAs have shown reactivity with a wide variety of nucleophiles including phenoxides, alkoxides, organometallic, amines, thiols, and azoles. They or their derivatives are reported to have nonlinear optical activity, and be useful as lubricants, etching agents, components of fuel cells, low dielectric materials, and super hydrophobic and oleophobic coatings. File:Tetrafluorocyclopropene.png, Tetrafluorocyclopropene File:Hexafluorocyclobutene.png, Hexafluorocyclobutene File:Octafluorocyclopentene.png, Octafluorocyclopentene File:Decafluorocyclohexene.png, Decafluorocyclohexene Reactivity Derivatization of these PFCA rings via displacement of fluorine atoms with nucleophiles occurs through an addition-elimination reaction in the presence of a base. Attack of the nucleophile on the PFCA ring generates a carbanion which can eliminate a fluoride ion, resulting in vinyl substituted and allyl substituted produ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluorocarbon
Fluorocarbons are chemical compounds with carbon-fluorine bonds. Compounds that contain many C-F bonds often has distinctive properties, e.g., enhanced stability, volatility, and hydrophobicity. Fluorocarbons and their derivatives are commercial polymers, refrigerants, drugs, and anesthetics. Nomenclature Perfluorocarbons or PFCs, are organofluorine compounds with the formula CxFy, i.e., they contain only carbon and fluorine. The terminology is not strictly followed and many fluorine-containing organic compounds are called fluorocarbons. Compounds with the prefix perfluoro- are hydrocarbons, including those with heteroatoms, wherein all C-H bonds have been replaced by C-F bonds. Fluorocarbons includes perfluoroalkanes, fluoroalkenes, fluoroalkynes, and perfluoroaromatic compounds. Perfluoroalkanes Chemical properties Perfluoroalkanes are very stable because of the strength of the carbon–fluorine bond, one of the strongest in organic chemistry. Its strength is a resu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cycloalkene
A cycloalkene or cycloolefin is a type of alkene hydrocarbon which contains a closed ring of carbon Atom, atoms and either one or more double bonds, but has no Aromaticity, aromatic character. Some cycloalkenes, such as cyclobutene and cyclopentene, can be used as Monomer, monomers to produce polymer chains. Due to geometrical considerations, smaller cycloalkenes are almost always the Cis–trans isomerism, ''cis'' isomers, and the term ''cis'' tends to be omitted from the names. Cycloalkenes require considerable p-orbital overlap in the form of a bridge between the carbon-carbon double bond, however, this is not feasible in smaller molecules due to the increase of strain that could break the molecule apart. In greater carbon number cycloalkenes, the addition of CH2 substituents decreases strain. trans-Cycloalkenes with 7 or fewer carbons in the ring will not occur under normal conditions because of the large amount of ring strain needed. In larger rings (8 or more atoms), Cis–tran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nucleophile
In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they are Lewis bases. ''Nucleophilic'' describes the affinity of a nucleophile to bond with positively charged atomic nuclei. Nucleophilicity, sometimes referred to as nucleophile strength, refers to a substance's nucleophilic character and is often used to compare the affinity of atoms. Neutral nucleophilic reactions with solvents such as alcohols and water are named solvolysis. Nucleophiles may take part in nucleophilic substitution, whereby a nucleophile becomes attracted to a full or partial positive charge, and nucleophilic addition. Nucleophilicity is closely related to basicity. History The terms ''nucleophile'' and ''electrophile'' were introduced by Christopher Kelk Ingold in 1933, replacing the terms ''anionoid'' and ''cationoid' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polycondensation
In polymer chemistry, condensation polymers are any kind of polymers whose process of polymerization involves a condensation reaction (i.e. a small molecule, such as water or methanol, is produced as a byproduct). Condensation polymers are formed by polycondensation, when the polymer is formed by condensation reactions between species of all degrees of polymerization, or by condensative chain polymerization, when the polymer is formed by sequential addition of monomers to an active site in a chain reaction. The main alternative forms of polymerization are chain polymerization and polyaddition, both of which give addition polymers. Condensation polymerization is a form of step-growth polymerization. Linear polymers are produced from bifunctional monomers, i.e. compounds with two reactive end-groups. Common condensation polymers include polyamides, polyacetals, and proteins. Polyamides One important class of condensation polymers are polyamides. They arise from the reaction ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Step Growth Polycondensation
Step(s) or STEP may refer to: Common meanings * Steps, making a staircase * Walking * Dance move * Military step, or march ** Marching Arts Films and television * ''Steps'' (TV series), Hong Kong * ''Step'' (film), US, 2017 Literature * ''Steps'' (novel), by Jerzy Kosinski * Systematic Training for Effective Parenting, a book series Music * Step (music), pitch change * Steps (pop group), UK * ''Step'' (Kara album), 2011, South Korea ** "Step" (Kara song) * ''Step'' (Meg album), 2007, Japan * "Step" (Vampire Weekend song) * "Step" (ClariS song) Organizations * Society of Trust and Estate Practitioners, international professional body for advisers who specialise in inheritance and succession planning * Board on Science, Technology, and Economic Policy of the U.S. National Academies * Solving the E-waste Problem, a UN organization Science, technology, and mathematics * Step (software), a physics simulator in KDE * Step function, in mathematics * Striatal-enriched prote ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Triethylamine
Triethylamine is the chemical compound with the formula N(CH2CH3)3, commonly abbreviated Et3N. It is also abbreviated TEA, yet this abbreviation must be used carefully to avoid confusion with triethanolamine or tetraethylammonium, for which TEA is also a common abbreviation. It is a colourless volatile liquid with a strong fishy odor reminiscent of ammonia. Like diisopropylethylamine (Hünig's base), triethylamine is commonly employed in organic synthesis, usually as a base. Synthesis and properties Triethylamine is prepared by the alkylation of ammonia with ethanol: :NH3 + 3 C2H5OH → N(C2H5)3 + 3 H2O The pKa of protonated triethylamine is 10.75,David Evans Research Group
and it can be used to prepare buffer solutions at that pH. The

picture info

Perfluorinated Compounds
A perfluorinated compound (PFC) or perfluoro compound is an organofluorine compound containing only carbon-fluorines and C−C bonds, as well as potentially heteroatoms. Perfluorinated compounds have properties that result from the presence of fluorocarbons (containing only C−F and C−C bonds) and any functional group. Common functional groups in PFCs are OH, CO2H, chlorine, O, and SO3H. Electrofluorination is the predominant method of production. Some of these compounds known as perfluoroalkanes can remain in our atmosphere for a long time. They bioaccumulate due to their chemical stability. Because of their potential contribution to climate change, they were regulated under the Kyoto Protocol. Some fluorosurfactants have proven toxic in animal testing while widespread industrial applications continue. Applications Perfluorinated compounds are used ubiquitously: For example, fluorosurfactants are widely used in the production of teflon (PTFE) and related fluorinated po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]