Partition (mathematics)
   HOME
*





Partition (mathematics)
Generally, a partition is a division of a whole into non-overlapping parts. Among the kinds of partitions considered in mathematics are * partition of a set or an ordered partition of a set, * partition of a graph, * partition of an integer, * partition of an interval, * partition of unity, * partition of a matrix; see block matrix, and * partition of the sum of squares in statistics problems, especially in the analysis of variance, * quotition and partition, two ways of viewing the operation of division of integers. Integer partitions * Composition (number theory) * Ewens's sampling formula * Ferrers graph * Glaisher's theorem * Landau's function * Partition function (number theory) * Pentagonal number theorem * Plane partition * Quotition and partition * Rank of a partition ** Crank of a partition * Solid partition * Young tableau * Young's lattice Set partitions {{main, Partition of a set * Bell number * Bell polynomi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partition Function (number Theory)
In number theory, the partition function represents the number of possible partitions of a non-negative integer . For instance, because the integer 4 has the five partitions , , , , and . No closed-form expression for the partition function is known, but it has both asymptotic expansions that accurately approximate it and recurrence relations by which it can be calculated exactly. It grows as an exponential function of the square root of its argument. The multiplicative inverse of its generating function is the Euler function; by Euler's pentagonal number theorem this function is an alternating sum of pentagonal number powers of its argument. Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences. For instance, whenever the decimal representation of ends in the digit 4 or 9, the number of partitions of will be divisible by 5. Definition and examples For a positive integer , is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Data Clustering
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical data analysis, used in many fields, including pattern recognition, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Cluster analysis itself is not one specific algorithm, but the general task to be solved. It can be achieved by various algorithms that differ significantly in their understanding of what constitutes a cluster and how to efficiently find them. Popular notions of clusters include groups with small distances between cluster members, dense areas of the data space, intervals or particular statistical distributions. Clustering can therefore be formulated as a multi-objective optimization problem. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cumulant
In probability theory and statistics, the cumulants of a probability distribution are a set of quantities that provide an alternative to the '' moments'' of the distribution. Any two probability distributions whose moments are identical will have identical cumulants as well, and vice versa. The first cumulant is the mean, the second cumulant is the variance, and the third cumulant is the same as the third central moment. But fourth and higher-order cumulants are not equal to central moments. In some cases theoretical treatments of problems in terms of cumulants are simpler than those using moments. In particular, when two or more random variables are statistically independent, the -th-order cumulant of their sum is equal to the sum of their -th-order cumulants. As well, the third and higher-order cumulants of a normal distribution are zero, and it is the only distribution with this property. Just as for moments, where ''joint moments'' are used for collections of random variab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bell Polynomials
In combinatorial mathematics, the Bell polynomials, named in honor of Eric Temple Bell, are used in the study of set partitions. They are related to Stirling and Bell numbers. They also occur in many applications, such as in the Faà di Bruno's formula. Definitions Exponential Bell polynomials The ''partial'' or ''incomplete'' exponential Bell polynomials are a triangular array of polynomials given by :B_(x_1,x_2,\dots,x_) = \sum \left(\right)^\left(\right)^\cdots\left(\right)^, where the sum is taken over all sequences ''j''1, ''j''2, ''j''3, ..., ''j''''n''−''k''+1 of non-negative integers such that these two conditions are satisfied: :j_1 + j_2 + \cdots + j_ = k, :j_1 + 2 j_2 + 3 j_3 + \cdots + (n-k+1)j_ = n. The sum :B_n(x_1,\dots,x_n)=\sum_^n B_(x_1,x_2,\dots,x_) is called the ''n''th ''complete exponential Bell polynomial''. Ordinary Bell polynomials Likewise, the partial ''ordinary'' Bell polynomial is defined by :\hat_(x_1,x_2,\ldots,x_) = \sum \frac x_1^ x_2^ \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bell Number
In combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy, they are named after Eric Temple Bell, who wrote about them in the 1930s. The Bell numbers are denoted B_n, where n is an integer greater than or equal to zero. Starting with B_0 = B_1 = 1, the first few Bell numbers are :1, 1, 2, 5, 15, 52, 203, 877, 4140, ... . The Bell number B_n counts the number of different ways to partition a set that has exactly n elements, or equivalently, the number of equivalence relations on it. B_n also counts the number of different rhyme schemes for n -line poems. As well as appearing in counting problems, these numbers have a different interpretation, as moments of probability distributions. In particular, B_n is the n -th moment of a Poisson distribution with mean 1. Counting Set partitions In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Young's Lattice
In mathematics, Young's lattice is a lattice that is formed by all integer partitions. It is named after Alfred Young, who, in a series of papers ''On quantitative substitutional analysis,'' developed the representation theory of the symmetric group. In Young's theory, the objects now called Young diagrams and the partial order on them played a key, even decisive, role. Young's lattice prominently figures in algebraic combinatorics, forming the simplest example of a differential poset in the sense of . It is also closely connected with the crystal bases for affine Lie algebras. Definition Young's lattice is a lattice (and hence also a partially ordered set) ''Y'' formed by all integer partitions ordered by inclusion of their Young diagrams (or Ferrers diagrams). Significance The traditional application of Young's lattice is to the description of the irreducible representations of symmetric groups S''n'' for all ''n'', together with their branching properties, in characteris ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Young Tableau
In mathematics, a Young tableau (; plural: tableaux) is a combinatorial object useful in representation theory and Schubert calculus. It provides a convenient way to describe the group representations of the symmetric and general linear groups and to study their properties. Young tableaux were introduced by Alfred Young, a mathematician at Cambridge University, in 1900. They were then applied to the study of the symmetric group by Georg Frobenius in 1903. Their theory was further developed by many mathematicians, including Percy MacMahon, W. V. D. Hodge, G. de B. Robinson, Gian-Carlo Rota, Alain Lascoux, Marcel-Paul Schützenberger and Richard P. Stanley. Definitions ''Note: this article uses the English convention for displaying Young diagrams and tableaux''. Diagrams A Young diagram (also called a Ferrers diagram, particularly when represented using dots) is a finite collection of boxes, or cells, arranged in left-justified rows, with the row lengths in non-increasing o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solid Partition
In mathematics, solid partitions are natural generalizations of partitions and plane partitions defined by Percy Alexander MacMahon. A solid partition of n is a three-dimensional array of non-negative integers n_ (with indices i, j, k\geq 1) such that : \sum_ n_=n and : n_ \leq n_,\quad n_ \leq n_\quad\text\quad n_ \leq n_ for all i, j \text k. Let p_3(n) denote the number of solid partitions of n. As the definition of solid partitions involves three-dimensional arrays of numbers, they are also called three-dimensional partitions in notation where plane partitions are two-dimensional partitions and partitions are one-dimensional partitions. Solid partitions and their higher-dimensional generalizations are discussed in the book by Andrews. Ferrers diagrams for solid partitions Another representation for solid partitions is in the form of Ferrers diagrams. The Ferrers diagram of a solid partition of n is a collection of n points or ''nodes'', \lambda=(\mathbf_1,\mathbf_2,\ld ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crank Of A Partition
In number theory, the crank of a partition of an integer is a certain integer associated with the partition. The term was first introduced without a definition by Freeman Dyson in a 1944 paper published in Eureka, a journal published by the Mathematics Society of Cambridge University. Dyson then gave a list of properties this yet-to-be-defined quantity should have. In 1988, George E. Andrews and Frank Garvan discovered a definition for the crank satisfying the properties hypothesized for it by Dyson. Dyson's crank Let ''n'' be a non-negative integer and let ''p''(''n'') denote the number of partitions of ''n'' (''p''(0) is defined to be 1). Srinivasa Ramanujan in a paper published in 1918 stated and proved the following congruences for the partition function ''p''(''n''), since known as Ramanujan congruences. * ''p''(5''n'' + 4) ≡ 0 (mod 5) * ''p''(7''n'' + 5) ≡ 0 (mod 7) * ''p''(11''n'' + 6) ≡ 0 (mod 11) These congruences imply that partitions of numbers of the form 5'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rank Of A Partition
In mathematics, particularly in the fields of number theory and combinatorics, the rank of a partition of a positive integer is a certain integer associated with the partition. In fact at least two different definitions of rank appear in the literature. The first definition, with which most of this article is concerned, is that the rank of a partition is the number obtained by subtracting the number of parts in the partition from the largest part in the partition. The concept was introduced by Freeman Dyson in a paper published in the journal Eureka. It was presented in the context of a study of certain congruence properties of the partition function discovered by the Indian mathematical genius Srinivasa Ramanujan. A different concept, sharing the same name, is used in combinatorics, where the rank is taken to be the size of the Durfee square of the partition. Definition By a ''partition'' of a positive integer ''n'' we mean a finite multiset λ = of positive integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]