HOME
*





Nørlund–Rice Integral
In mathematics, the Nørlund–Rice integral, sometimes called Rice's method, relates the ''n''th forward difference of a function to a line integral on the complex plane. It commonly appears in the theory of finite differences and has also been applied in computer science and graph theory to estimate binary tree lengths. It is named in honour of Niels Erik Nørlund and Stephen O. Rice. Nørlund's contribution was to define the integral; Rice's contribution was to demonstrate its utility by applying saddle-point techniques to its evaluation. Definition The ''n''th forward difference of a function ''f''(''x'') is given by :\Delta^n x)= \sum_^n (-1)^ f(x+k) where is the binomial coefficient. The Nörlund–Rice integral is given by :\sum_^n (-1)^ f(k) = \frac \oint_\gamma \frac\, dz where ''f'' is understood to be meromorphic, α is an integer, 0\leq \alpha \leq n, and the contour of integration is understood to circle the poles located at the integers α, ..., ''n'', but enc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mellin Transform
In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier transform, and the theory of the gamma function and allied special functions. The Mellin transform of a function is :\left\(s) = \varphi(s)=\int_0^\infty x^ f(x) \, dx. The inverse transform is :\left\(x) = f(x)=\frac \int_^ x^ \varphi(s)\, ds. The notation implies this is a line integral taken over a vertical line in the complex plane, whose real part ''c'' need only satisfy a mild lower bound. Conditions under which this inversion is valid are given in the Mellin inversion theorem. The transform is named after the Finnish mathematician Hjalmar Mellin, who introduced it in a paper publishe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear engineering, nuclear, aerospace engineering, aerospace, mechanical engineering, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is Analyticity of holomorphic functions, analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Factorial And Binomial Topics
In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 3 \times 2 \times 1 \\ &= n\times(n-1)!\\ \end For example, 5! = 5\times 4! = 5 \times 4 \times 3 \times 2 \times 1 = 120. The value of 0! is 1, according to the convention for an empty product. Factorials have been discovered in several ancient cultures, notably in Indian mathematics in the canonical works of Jain literature, and by Jewish mystics in the Talmudic book '' Sefer Yetzirah''. The factorial operation is encountered in many areas of mathematics, notably in combinatorics, where its most basic use counts the possible distinct sequences – the permutations – of n distinct objects: there In mathematical analysis, factorials are used in power series for the exponential function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

The Art Of Computer Programming
''The Art of Computer Programming'' (''TAOCP'') is a comprehensive monograph written by the computer scientist Donald Knuth presenting programming algorithms and their analysis. Volumes 1–5 are intended to represent the central core of computer programming for sequential machines. When Knuth began the project in 1962, he originally conceived of it as a single book with twelve chapters. The first three volumes of what was then expected to be a seven-volume set were published in 1968, 1969, and 1973. Work began in earnest on Volume 4 in 1973, but was suspended in 1977 for work on typesetting prompted by the second edition of Volume 2. Writing of the final copy of Volume 4A began in longhand in 2001, and the first online pre-fascicle, 2A, appeared later in 2001. The first published installment of Volume 4 appeared in paperback as Fascicle 2 in 2005. The hardback Volume 4A, combining Volume 4, Fascicles 0–4, was published in 2011. Volume 4, Fascicle 6 ("Satisfiability") was rel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Factorial And Binomial Topics
{{Short description, none This is a list of factorial and binomial topics in mathematics. See also binomial (other). * Abel's binomial theorem * Alternating factorial *Antichain *Beta function *Bhargava factorial *Binomial coefficient **Pascal's triangle *Binomial distribution *Binomial proportion confidence interval *Binomial-QMF (Daubechies wavelet filters) *Binomial series *Binomial theorem *Binomial transform *Binomial type *Carlson's theorem *Catalan number **Fuss–Catalan number * Central binomial coefficient *Combination *Combinatorial number system *De Polignac's formula *Difference operator *Difference polynomials *Digamma function *Egorychev method * Erdős–Ko–Rado theorem *Euler–Mascheroni constant *Faà di Bruno's formula *Factorial *Factorial moment *Factorial number system *Factorial prime *Gamma distribution *Gamma function *Gaussian binomial coefficient *Gould's sequence *Hyperfactorial *Hypergeometric distribution * Hypergeometric function identities ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Table Of Newtonian Series
In mathematics, a Newtonian series, named after Isaac Newton, is a sum over a sequence a_n written in the form :f(s) = \sum_^\infty (-1)^n a_n = \sum_^\infty \frac a_n where : is the binomial coefficient and (s)_n is the falling factorial. Newtonian series often appear in relations of the form seen in umbral calculus. List The generalized binomial theorem gives : (1+z)^s = \sum_^z^n = 1+z+z^2+\cdots. A proof for this identity can be obtained by showing that it satisfies the differential equation : (1+z) \frac = s (1+z)^s. The digamma function: :\psi(s+1)=-\gamma-\sum_^\infty \frac . The Stirling numbers of the second kind are given by the finite sum :\left\ =\frac\sum_^(-1)^ j^n. This formula is a special case of the ''k''th forward difference of the monomial ''x''''n'' evaluated at ''x'' = 0: : \Delta^k x^n = \sum_^(-1)^ (x+j)^n. A related identity forms the basis of the Nörlund–Rice integral: :\sum_^n \frac = \frac = \frac= B(n+1,s-n),s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Asymptotic Expansion
In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion (after Henri Poincaré) is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function. The most common type of asymptotic expansion is a power series in either positive or negative powers. Methods of generating such expansions include the Euler–Maclaurin summation formula and integral transforms such as the Laplace and Mellin transforms. Repeated integration by parts will often lead to an asymptotic expansion. Since a '' convergent'' Taylor series fits the definition of asymptotic expansion as well, the phrase "asymptotic series" usually implies a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perron's Formula
In mathematics, and more particularly in analytic number theory, Perron's formula is a formula due to Oskar Perron to calculate the sum of an arithmetic function, by means of an inverse Mellin transform. Statement Let \ be an arithmetic function, and let : g(s)=\sum_^ \frac be the corresponding Dirichlet series. Presume the Dirichlet series to be uniform convergence, uniformly convergent for \Re(s)>\sigma. Then Perron's formula is : A(x) = ' a(n) =\frac\int_^ g(z)\frac \,dz. Here, the prime on the summation indicates that the last term of the sum must be multiplied by 1/2 when ''x'' is an integer. The integral is not a convergent Lebesgue integral; it is understood as the Cauchy principal value. The formula requires that ''c'' > 0, ''c'' > σ, and ''x'' > 0. Proof An easy sketch of the proof comes from taking Abel's summation formula, Abel's sum formula : g(s)=\sum_^ \frac=s\int_^ A(x)x^ dx. This is nothing but a Laplace transform under the variable change x = e^t. Invertin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riesz Mean
In mathematics, the Riesz mean is a certain mean of the terms in a series. They were introduced by Marcel Riesz in 1911 as an improvement over the Cesàro mean. The Riesz mean should not be confused with the Bochner–Riesz mean or the Strong–Riesz mean. Definition Given a series \, the Riesz mean of the series is defined by :s^\delta(\lambda) = \sum_ \left(1-\frac\right)^\delta s_n Sometimes, a generalized Riesz mean is defined as :R_n = \frac \sum_^n (\lambda_k-\lambda_)^\delta s_k Here, the \lambda_n are a sequence with \lambda_n\to\infty and with \lambda_/\lambda_n\to 1 as n\to\infty. Other than this, the \lambda_n are taken as arbitrary. Riesz means are often used to explore the summability of sequences; typical summability theorems discuss the case of s_n = \sum_^n a_k for some sequence \. Typically, a sequence is summable when the limit \lim_ R_n exists, or the limit \lim_s^\delta(\lambda) exists, although the precise summability theorems in question often impose ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Function
In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer , \Gamma(n) = (n-1)!\,. Derived by Daniel Bernoulli, for complex numbers with a positive real part, the gamma function is defined via a convergent improper integral: \Gamma(z) = \int_0^\infty t^ e^\,dt, \ \qquad \Re(z) > 0\,. The gamma function then is defined as the analytic continuation of this integral function to a meromorphic function that is holomorphic in the whole complex plane except zero and the negative integers, where the function has simple poles. The gamma function has no zeroes, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential function: \Gamma(z) = \mathcal M \ (z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poisson Generating Function
In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the ''formal'' power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers. There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series; definitions and examples are given below. Every sequence in principle has a generating function of each type (except t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]