Nucleolus (game Theory)
   HOME





Nucleolus (game Theory)
In cooperative game theory, the nucleolus of a cooperative game is the solution (i.e., allocation of payments to players) that maximizes the smallest excess of a coalition (where the excess is the difference between the payment given to the coalition and the value the coalition could get by deviating). Subject to that, the nucleolus satisfies the second-smallest excess; and so on, in the leximin order. The nucleolus was introduced by David Schmeidler in 1969. Background In a cooperative game, there is a set ''N'' of ''players'', who can cooperate and form ''coalitions''. Each coalition ''S'' (subset of players) has a ''value'', which is the profit that ''S'' can make if they coopereate on their own, ignoring the other players in ''N''. The players opt to form the ''grand coalition'' - a coalition containing all players in ''N''. The question then arises, how should the value of the grand coalition be allocated among the players? Each such allocation of value is called a ''soluti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cooperative Game Theory
In game theory, a cooperative game (or coalitional game) is a game with groups of players who form binding “coalitions” with external enforcement of cooperative behavior (e.g. through contract law). This is different from non-cooperative games in which there is either no possibility to forge alliances or all agreements need to be self-enforcing (e.g. through credible threats). Cooperative games are analysed by focusing on coalitions that can be formed, and the joint actions that groups can take and the resulting collective payoffs. Mathematical definition A cooperative game is given by specifying a value for every coalition. Formally, the coalitional game consists of a finite set of players N , called the ''grand coalition'', and a ''characteristic function'' v : 2^N \to \mathbb from the set of all possible coalitions of players to a set of payments that satisfies v( \emptyset ) = 0 . The function describes how much collective payoff a set of players can gain by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minimum-cost Spanning Tree Game
A minimum-cost spanning-tree game (MCST game) is a kind of a Cooperative game theory, cooperative game. In an MCST game, each player is a node in a complete graph. The graph contains an additional node - the ''supply node'' - denoted by ''s''. The goal of the players is that all of them will be connected by a path to ''s''. To this end, they need to construct a spanning tree. Each edge in the graph has a cost, and the players build the minimum cost spanning tree. The question then arises, how to allocate the cost of this MCST among the players? The solution offered by cooperative game theory is to consider the cost of each potential coalition - each subset of the players. The cost of each coalition ''S'' is the minimum cost of a spanning tree connecting only the nodes in ''S'' to the supply node ''s''. The ''value'' of ''S'' is minus the cost of ''S''. Using these definitions, various solution concepts from cooperative game theory can be applied. MCST games were introduced by Bird in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Contested Garment Rule
The contested garment (CG) rule, also called concede-and-divide, is a division rule for solving problems of conflicting claims (also called "bankruptcy problems"). The idea is that, if one claimant's claim is less than 100% of the estate to divide, then he effectively ''concedes'' the unclaimed estate to the other claimant. Therefore, we first give to each claimant, the amount conceded to him/her by the other claimant. The remaining amount is then divided equally among the two claimants. The CG rule first appeared in the Mishnah, exemplified by a case of conflict over a garment, hence the name. In the Mishnah, it was described only for two-people problems. But in 1985, Robert Aumann and Michael Maschler have proved that, in every bankruptcy problem, there is a unique division that is consistent with the CG rule for each pair of claimants. They call the rule, that selects this unique division, the CG-consistent rule (it is also called the Talmud rule). Problem description There i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ellipsoid Method
In mathematical optimization, the ellipsoid method is an iterative method for convex optimization, minimizing convex functions over convex sets. The ellipsoid method generates a sequence of ellipsoids whose volume uniformly decreases at every step, thus enclosing a minimizer of a convex function. When specialized to solving feasible linear optimization problems with rational data, the ellipsoid method is an algorithm which finds an optimal solution in a number of steps that is polynomial in the input size. History The ellipsoid method has a long history. As an iterative method, a preliminary version was introduced by Naum Z. Shor. In 1972, an approximation algorithm for real convex optimization, convex minimization was studied by Arkadi Nemirovski and David B. Yudin (Judin). As an algorithm for solving linear programming problems with rational data, the ellipsoid algorithm was studied by Leonid Khachiyan; Khachiyan's achievement was to prove the Polynomial time, polynomial-time ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE