Novikov Ring
   HOME
*





Novikov Ring
In mathematics, given an additive subgroup \Gamma \subset \R, the Novikov ring \operatorname(\Gamma) of \Gamma is the subring of \Z Gamma.html" ;"title="![\Gamma">![\Gamma!/math>Here, \Z Gamma.html" ;"title="![\Gamma">![\Gamma!/math> is the ring consisting of the formal sums \sum_ n_\gamma t^\gamma, n_\gamma integers and ''t'' a formal variable, such that the multiplication is an extension of a multiplication in the integral group ring \Z[\Gamma]. consisting of formal sums \sum n_ t^ such that \gamma_1 > \gamma_2 > \cdots and \gamma_i \to -\infty. The notion was introduced by Sergei Novikov in the papers that initiated the generalization of Morse theory using a closed one-form instead of a function. The notion is used in quantum cohomology, among the others. The Novikov ring \operatorname(\Gamma) is a principal ideal domain. Let ''S'' be the subset of \Z[\Gamma] consisting of those with leading term 1. Since the elements of ''S'' are unit elements of \operatorname(\Gamma), the Loca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Ring
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring. If the ring is commutative then the group ring is also referred to as a group algebra, for it is indeed an algebra over the given ring. A group algebra over a field has a further structure of a Hopf algebra; in this case, it is thus called a group Hopf algebra. The apparatus of group rings is especially useful in the theory of group representations. Definition Let ''G'' be a group, written multiplicatively, and let ''R'' be a ring. The group ring of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morse Homology
In mathematics, specifically in the field of differential topology, Morse homology is a homology theory defined for any smooth manifold. It is constructed using the smooth structure and an auxiliary metric on the manifold, but turns out to be topologically invariant, and is in fact isomorphic to singular homology. Morse homology also serves as a model for the various infinite-dimensional generalizations known as Floer homology theories. Formal definition Given any (compact) smooth manifold, let ''f'' be a Morse function and ''g'' a Riemannian metric on the manifold. (These are auxiliary; in the end, the Morse homology depends on neither.) The pair (f, g) gives us a gradient vector field. We say that (f, g) is Morse–Smale if the stable and unstable manifolds associated to all of the critical points of ''f'' intersect each other transversely. For any such pair (f, g), it can be shown that the difference in index between any two critical points is equal to the dimension of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and ''p''-adic integers. Commutative algebra is the main technical tool in the local study of schemes. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. In algebraic number theory, the rings of algebraic integers are Dedekind rings, which constitute therefore an important class of commutative rings. Considerations related to modular arithmetic have led to the no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Morse Inequalities
In mathematics, specifically in differential topology, Morse theory enables one to analyze the topology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differentiable function on a manifold will reflect the topology quite directly. Morse theory allows one to find CW structures and handle decompositions on manifolds and to obtain substantial information about their homology. Before Morse, Arthur Cayley and James Clerk Maxwell had developed some of the ideas of Morse theory in the context of topography. Morse originally applied his theory to geodesics ( critical points of the energy functional on the space of paths). These techniques were used in Raoul Bott's proof of his periodicity theorem. The analogue of Morse theory for complex manifolds is Picard–Lefschetz theory. Basic concepts To illustrate, consider a mountainous landscape surface M (more generally, a manifold). If f is the function M \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Structure Theorem For Finitely Generated Modules Over A Principal Ideal Domain
In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules over a principal ideal domain (PID) can be uniquely decomposed in much the same way that integers have a prime factorization. The result provides a simple framework to understand various canonical form results for square matrices over fields. Statement When a vector space over a field ''F'' has a finite generating set, then one may extract from it a basis consisting of a finite number ''n'' of vectors, and the space is therefore isomorphic to ''F''''n''. The corresponding statement with the ''F'' generalized to a principal ideal domain ''R'' is no longer true, since a basis for a finitely generated module over ''R'' might not exist. However such a module is still isomorphic to a quotient of some module ''Rn'' with '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Coefficient System
In mathematics, a local system (or a system of local coefficients) on a topological space ''X'' is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group ''A'', and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943. The category of perverse sheaves on a manifold is equivalent to the category of local systems on the manifold. Definition Let ''X'' be a topological space. A local system (of abelian groups/modules/...) on ''X'' is a locally constant sheaf (of abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commut ...s/Module over a ring, modules...) on ''X''. In other words, a sheaf \mathcal is a local system if every point has an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected Space
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topologi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hurewicz Homomorphism
In mathematics, the Hurewicz theorem is a basic result of algebraic topology, connecting homotopy theory with homology theory via a map known as the Hurewicz homomorphism. The theorem is named after Witold Hurewicz, and generalizes earlier results of Henri Poincaré. Statement of the theorems The Hurewicz theorems are a key link between homotopy groups and homology groups. Absolute version For any path-connected space ''X'' and positive integer ''n'' there exists a group homomorphism :h_* \colon \pi_n(X) \to H_n(X), called the Hurewicz homomorphism, from the ''n''-th homotopy group to the ''n''-th homology group (with integer coefficients). It is given in the following way: choose a canonical generator u_n \in H_n(S^n), then a homotopy class of maps f \in \pi_n(X) is taken to f_*(u_n) \in H_n(X). The Hurewicz theorem states cases in which the Hurewitz homomorphism is an isomorphism. * For n\ge 2, if ''X'' is (n-1)-connected (that is: \pi_i(X)= 0 for all ''i''2 there exists a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homology (mathematics)
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry. The original motivation for defining homology groups was the observation that two shapes can be distinguished by examining their holes. For instance, a circle is not a disk because the circle has a hole through it while the disk is solid, and the ordinary sphere is not a circle because the sphere encloses a two-dimensional hole while the circle encloses a one-dimensional hole. However, because a hole is "not there", it is not immediately obvious how to define a hole or how to distinguish different kinds of holes. Homology was originally a rigorous mathematical method for defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Formal Sum
In mathematics, a formal sum, formal series, or formal linear combination may be: *In group theory, an element of a free abelian group, a sum of finitely many elements from a given basis set multiplied by integer coefficients. *In linear algebra, an element of a vector space, a sum of finitely many elements from a given basis set multiplied by real, complex, or other numerical coefficients. *In the study of series (mathematics), a sum of an infinite sequence of numbers or other quantities, considered as an abstract mathematical object regardless of whether the sum converges. *In the study of power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''an'' represents the coefficient of the ''n''th term and ''c'' is a const ...
, a sum of infinitely many monomials with distinct positive integer exponents, again considered as an abstract object regardless ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chain Complex
In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or module (mathematics), modules) and a sequence of group homomorphism, homomorphisms between consecutive groups such that the image (mathematics), image of each homomorphism is included in the kernel (algebra)#Group homomorphisms, kernel of the next. Associated to a chain complex is its Homology (mathematics), homology, which describes how the images are included in the kernels. A cochain complex is similar to a chain complex, except that its homomorphisms are in the opposite direction. The homology of a cochain complex is called its cohomology. In algebraic topology, the singular chain complex of a topological space X is constructed using continuous function#continuous functions between topological spaces, continuous maps from a simplex to X, and the homomorphisms of the chain complex capture how these maps restrict to the boundary of the simplex. The homology of this chain co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]