HOME
*



picture info

Noether Isomorphism Theorem
In mathematics, specifically abstract algebra, the isomorphism theorems (also known as Noether's isomorphism theorems) are theorems that describe the relationship between quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules, Lie algebras, and various other algebraic structures. In universal algebra, the isomorphism theorems can be generalized to the context of algebras and congruences. History The isomorphism theorems were formulated in some generality for homomorphisms of modules by Emmy Noether in her paper ''Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern'', which was published in 1927 in Mathematische Annalen. Less general versions of these theorems can be found in work of Richard Dedekind and previous papers by Noether. Three years later, B.L. van der Waerden published his influential ''Moderne Algebra'' the first abstract algebra textbook that took the groups-rings-fields app ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bartel Leendert Van Der Waerden
Bartel Leendert van der Waerden (; 2 February 1903 – 12 January 1996) was a Dutch mathematician and historian of mathematics. Biography Education and early career Van der Waerden learned advanced mathematics at the University of Amsterdam and the University of Göttingen, from 1919 until 1926. He was much influenced by Emmy Noether at Göttingen, Germany. Amsterdam awarded him a Ph.D. for a thesis on algebraic geometry, supervised by Hendrick de Vries. Göttingen awarded him the habilitation in 1928. In that year, at the age of 25, he accepted a professorship at the University of Groningen. In his 27th year, Van der Waerden published his ''Moderne Algebra'', an influential two-volume treatise on abstract algebra, still cited, and perhaps the first treatise to treat the subject as a comprehensive whole. This work systematized an ample body of research by Emmy Noether, David Hilbert, Richard Dedekind, and Emil Artin. In the following year, 1931, he was appointed professor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kernel (algebra)
In algebra, the kernel of a homomorphism (function that preserves the structure) is generally the inverse image of 0 (except for groups whose operation is denoted multiplicatively, where the kernel is the inverse image of 1). An important special case is the kernel of a linear map. The kernel of a matrix, also called the ''null space'', is the kernel of the linear map defined by the matrix. The kernel of a homomorphism is reduced to 0 (or 1) if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can be viewed as a measure of the degree to which the homomorphism fails to be injective.See and . For some types of structure, such as abelian groups and vector spaces, the possible kernels are exactly the substructures of the same type. This is not always the case, and, sometimes, the possible kernels have received a special name, such as normal subgroup for groups and two-sided ideals for r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Homomorphism
In mathematics, given two groups, (''G'', ∗) and (''H'', ·), a group homomorphism from (''G'', ∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) where the group operation on the left side of the equation is that of ''G'' and on the right side that of ''H''. From this property, one can deduce that ''h'' maps the identity element ''eG'' of ''G'' to the identity element ''eH'' of ''H'', : h(e_G) = e_H and it also maps inverses to inverses in the sense that : h\left(u^\right) = h(u)^. \, Hence one can say that ''h'' "is compatible with the group structure". Older notations for the homomorphism ''h''(''x'') may be ''x''''h'' or ''x''''h'', though this may be confused as an index or a general subscript. In automata theory, sometimes homomorphisms are written to the right of their arguments without parentheses, so that ''h''(''x'') becomes simply xh. In areas of mathematics where one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lattice Theorem
In group theory, the correspondence theorem (also the lattice theorem,W.R. Scott: ''Group Theory'', Prentice Hall, 1964, p. 27. and variously and ambiguously the third and fourth isomorphism theorem ) states that if N is a normal subgroup of a group G, then there exists a bijection from the set of all subgroups A of G containing N, onto the set of all subgroups of the quotient group G/N. The structure of the subgroups of G/N is exactly the same as the structure of the subgroups of G containing N, with N collapsed to the identity element. Specifically, if : ''G'' is a group, : N \triangleleft G, a normal subgroup of ''G'', : \mathcal = \, the set of all subgroups ''A'' of ''G'' that contain ''N'', and : \mathcal = \, the set of all subgroups of ''G''/''N'', then there is a bijective map \phi: \mathcal \to \mathcal such that : \phi(A) = A/N for all A \in \mathcal. One further has that if ''A'' and ''B'' are in \mathcal then * A \subseteq B if and only if A/N \subseteq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (ring Theory)
In ring theory, a branch of abstract algebra, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Otto Schreier
Otto Schreier (3 March 1901 in Vienna, Austria – 2 June 1929 in Hamburg, Germany) was a Jewish-Austrian mathematician who made major contributions in combinatorial group theory and in the topology of Lie groups. Life His parents were the architect Theodor Schreier (1873-1943) and his wife Anna (b. Turnau) (1878-1942). From 1920 Otto Schreier studied at the University of Vienna and took classes with Wilhelm Wirtinger, Philipp Furtwängler, Hans Hahn, Kurt Reidemeister, Leopold Vietoris, and Josef Lense. In 1923 he obtained his doctorate, under the supervision of Philipp Furtwängler, entitled ''On the expansion of groups (Über die Erweiterung von Gruppen)''. In 1926 he completed his habilitation with Emil Artin at the University of Hamburg ''(Die Untergruppen der freien Gruppe. Abhandlungen des Mathematischen Seminars der Universität Hamburg, Band 5, 1927, Seiten 172–179)'', where he had also given lectures before. In 1928 he became a professor at the University of Rost ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wilhelm Blaschke
Wilhelm Johann Eugen Blaschke (13 September 1885 – 17 March 1962) was an Austrian mathematician working in the fields of differential and integral geometry. Education and career Blaschke was the son of mathematician Josef Blaschke, who taught geometry at the Landes Oberrealschule in Graz. After studying for two years at the Technische Hochschule in Graz, he went to the University of Vienna, and completed a doctorate in 1908 under the supervision of Wilhelm Wirtinger. His dissertation was ''Über eine besondere Art von Kurven vierter Klasse''. After completing his doctorate he spent several years visiting mathematicians at the major universities in Italy and Germany. He spent two years each in positions in Prague, Leipzig, Göttingen, and Tübingen until, in 1919, he took the professorship at the University of Hamburg that he would keep for the rest of his career. His students at Hamburg included Shiing-Shen Chern, Luis Santaló, and Emanuel Sperner. In 1933 Blaschke signed th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Emil Artin
Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrian mathematician of Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing largely to class field theory and a new construction of L-functions. He also contributed to the pure theories of rings, groups and fields. Along with Emmy Noether, he is considered the founder of modern abstract algebra. Early life and education Parents Emil Artin was born in Vienna to parents Emma Maria, née Laura (stage name Clarus), a soubrette on the operetta stages of Austria and Germany, and Emil Hadochadus Maria Artin, Austrian-born of mixed Austrian and Armenian descent. His Armenian last name was Artinian which was shortened to Artin. Several documents, including Emil's birth certificate, list the father's occupation as “opera singer” though others list it as “art dealer.” It seems at least plausible that he and Emma had ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]