Newtonian Dynamics
   HOME
*





Newtonian Dynamics
In physics, Newtonian dynamics (also known as Newtonian mechanics) is the study of the dynamics of a particle or a small body according to Newton's laws of motion. Mathematical generalizations Typically, the Newtonian dynamics occurs in a three-dimensional Euclidean space, which is flat. However, in mathematics Newton's laws of motion can be generalized to multidimensional and curved spaces. Often the term Newtonian dynamics is narrowed to Newton's second law \displaystyle m\,\mathbf a=\mathbf F. Newton's second law in a multidimensional space Consider \displaystyle N particles with masses \displaystyle m_1,\,\ldots,\,m_N in the regular three-dimensional Euclidean space. Let \displaystyle \mathbf r_1,\,\ldots,\,\mathbf r_N be their radius-vectors in some inertial coordinate system. Then the motion of these particles is governed by Newton's second law applied to each of them The three-dimensional radius-vectors \displaystyle\mathbf r_1,\,\ldots,\,\mathbf r_N can be built into a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dynamics (mechanics)
Dynamics is the branch of classical mechanics that is concerned with the study of forces and their effects on motion. Isaac Newton was the first to formulate the fundamental physical laws that govern dynamics in classical non-relativistic physics, especially his second law of motion. Principles Generally speaking, researchers involved in dynamics study how a physical system might develop or alter over time and study the causes of those changes. In addition, Newton established the fundamental physical laws which govern dynamics in physics. By studying his system of mechanics, dynamics can be understood. In particular, dynamics is mostly related to Newton's second law of motion. However, all three laws of motion are taken into account because these are interrelated in any given observation or experiment. Linear and rotational dynamics The study of dynamics falls under two categories: linear and rotational. Linear dynamics pertains to objects moving in a line and involves such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Holonomic Constraints
In classical mechanics, holonomic constraints are relations between the position variables (and possibly time) that can be expressed in the following form: :f(u_1, u_2, u_3,\ldots, u_n, t) = 0 where \ are the ''n'' generalized coordinates that describe the system. For example, the motion of a particle constrained to lie on the surface of a sphere is subject to a holonomic constraint, but if the particle is able to fall off the sphere under the influence of gravity, the constraint becomes non-holonomic. For the first case, the holonomic constraint may be given by the equation :r^2-a^2=0 where r is the distance from the centre of a sphere of radius a, whereas the second non-holonomic case may be given by :r^2 - a^2 \geq 0 Velocity-dependent constraints (also called semi-holonomic constraints) such as :f(u_1,u_2,\ldots,u_n,\dot_1,\dot_2,\ldots,\dot_n,t)=0 are not usually holonomic. Holonomic system In classical mechanics a system may be defined as holonomic if all constraints ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modified Newtonian Dynamics
Modified Newtonian dynamics (MOND) is a hypothesis that proposes a modification of Newton's law of universal gravitation to account for observed properties of galaxies. It is an alternative to the hypothesis of dark matter in terms of explaining why galaxies do not appear to obey the currently understood laws of physics. Created in 1982 and first published in 1983 by Israeli physicist Mordehai Milgrom,. . . the hypothesis' original motivation was to explain why the velocities of stars in galaxies were observed to be larger than expected based on Newtonian mechanics. Milgrom noted that this discrepancy could be resolved if the gravitational force experienced by a star in the outer regions of a galaxy was proportional to the ''square'' of its centripetal acceleration (as opposed to the centripetal acceleration itself, as in Newton's second law) or alternatively, if gravitational force came to vary inversely ''linearly'' with radius (as opposed to the inverse square of the radius, as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Raising And Lowering Indices
In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions. Vectors, covectors and the metric Mathematical formulation Mathematically vectors are elements of a vector space V over a field K, and for use in physics V is usually defined with K=\mathbb or \mathbb. Concretely, if the dimension n=\text(V) of V is finite, then, after making a choice of basis, we can view such vector spaces as \mathbb^n or \mathbb^n. The dual space is the space of linear functionals mapping V\rightarrow K. Concretely, in matrix notation these can be thought of as row vectors, which give a number when applied to column vectors. We denote this by V^*:= \text(V,K), so that \alpha \in V^* is a linear map \alpha:V\rightarrow K. Then under a choice of basis \, we can view vectors v\in V as an K^n vector with components v^i (vectors are taken by convention to have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system. Tensors have become important in physics because they provide a concise mathematical framework for formulating and solving physics problems in areas such as mechanics (stress, elasticity, fluid mechanics, moment of inertia, ...), electrodynamics (electromagnetic tensor, Maxwell tensor, permittivity, magnetic susceptibility, ...), general relativity ( stress–energy tensor, cur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Metric Connection
In mathematics, a metric connection is a connection in a vector bundle ''E'' equipped with a bundle metric; that is, a metric for which the inner product of any two vectors will remain the same when those vectors are parallel transported along any curve. .(''Third edition: see chapter 3; Sixth edition: see chapter 4.'') This is equivalent to: * A connection for which the covariant derivatives of the metric on ''E'' vanish. * A principal connection on the bundle of orthonormal frames of ''E''. A special case of a metric connection is a Riemannian connection; there is a unique such which is torsion free, the Levi-Civita connection. In this case, the bundle ''E'' is the tangent bundle ''TM'' of a manifold, and the metric on ''E'' is induced by a Riemannian metric on ''M''. Another special case of a metric connection is a Yang–Mills connection, which satisfies the Yang–Mills equations of motion. Most of the machinery of defining a connection and its curvature can go through ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Christoffel Symbols
In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group . As a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normal Force
In mechanics, the normal force F_n is the component of a contact force that is perpendicular to the surface that an object contacts, as in Figure 1. In this instance ''normal'' is used in the geometric sense and means perpendicular, as opposed to the common language use of ''normal'' meaning "ordinary" or "expected". A person standing still on a platform is acted upon by gravity, which would pull them down towards the Earth's core unless there were a countervailing force from the resistance of the platform's molecules, a force which is named the "normal force". The normal force is one type of ground reaction force. If the person stands on a slope and does not sink into the ground or slide downhill, the total ground reaction force can be divided into two components: a normal force perpendicular to the ground and a frictional force parallel to the ground. In another common situation, if an object hits a surface with some speed, and the surface can withstand the impact, the nor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metric Tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point of is a bilinear form defined on the tangent space at (that is, a bilinear function that maps pairs of tangent vectors to real numbers), and a metric tensor on consists of a metric tensor at each point of that varies smoothly with . A metric tensor is ''positive-definite'' if for every nonzero vector . A manifold equipped with a positive-definite metric tensor is known as a Riemannian manifold. Such a metric tensor can be thought of as specifying ''infinitesimal'' distance on the manifold. On a Riemannian manifold , the length of a smooth curve between two points and can be defined by integration, and the distance between and can be defined as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lagrangian Mechanics
In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle (also known as the principle of least action). It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his 1788 work, '' Mécanique analytique''. Lagrangian mechanics describes a mechanical system as a pair (M,L) consisting of a configuration space M and a smooth function L within that space called a ''Lagrangian''. By convention, L = T - V, where T and V are the kinetic and potential energy of the system, respectively. The stationary action principle requires that the action functional of the system derived from L must remain at a stationary point (a maximum, minimum, or saddle) throughout the time evolution of the system. This constraint allows the calculation of the equations of motion of the system using Lagrange's equations. Introduction Suppose there exists a bead sliding around on a wire, or a swinging simple p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. The concept has applications in computer-graphics given the need to associate pictures with coordinates (e.g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scleronomous
A mechanical system is scleronomous if the equations of constraints do not contain the time as an explicit variable and the equation of constraints can be described by generalized coordinates. Such constraints are called scleronomic constraints. The opposite of scleronomous is rheonomous. Application In 3-D space, a particle with mass m\,\!, velocity \mathbf\,\! has kinetic energy T\,\! :T =\fracm v^2 \,\!. Velocity is the derivative of position r\,\! with respect to time t\,\!. Use chain rule for several variables: :\mathbf=\frac=\sum_i\ \frac\dot_i+\frac\,\!. where q_i\,\! are generalized coordinates. Therefore, :T =\fracm \left(\sum_i\ \frac\dot_i+\frac\right)^2\,\!. Rearranging the terms carefully, :T =T_0+T_1+T_2\,\!: :T_0=\fracm\left(\frac\right)^2\,\!, :T_1=\sum_i\ m\frac\cdot \frac\dot_i\,\!, :T_2=\sum_\ \fracm\frac\cdot \frac\dot_i\dot_j\,\!, where T_0\,\!, T_1\,\!, T_2\,\! are respectively homogeneous functions of degree 0, 1, and 2 in generalized velocities. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]