Newton Kernel
In mathematics, the Newtonian potential or Newton potential is an operator in vector calculus that acts as the inverse to the negative Laplacian, on functions that are smooth and decay rapidly enough at infinity. As such, it is a fundamental object of study in potential theory. In its general nature, it is a singular integral operator, defined by convolution with a function having a mathematical singularity at the origin, the Newtonian kernel Γ which is the fundamental solution of the Laplace equation. It is named for Isaac Newton, who first discovered it and proved that it was a harmonic function in the special case of three variables, where it served as the fundamental gravitational potential in Newton's law of universal gravitation. In modern potential theory, the Newtonian potential is instead thought of as an electrostatic potential. The Newtonian potential of a compactly supported integrable function ''f'' is defined as the convolution u(x) = \Gamma * f(x) = \int_ \Gamma(x ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integrable Function
In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with differentiation, integration is a fundamental, essential operation of calculus,Integral calculus is a very well established mathematical discipline for which there are many sources. See and , for example. and serves as a tool to solve problems in mathematics and physics involving the area of an arbitrary shape, the length of a curve, and the volume of a solid, among others. The integrals enumerated here are those termed definite integrals, which can be interpreted as the signed area of the region in the plane that is bounded by the graph of a given function between two points in the real line. Conventionally, areas above the horizontal axis of the plane are positive while areas below are negative. Integrals also refer to the concept of a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lyapunov Surface
Lyapunov (, in old-Russian often written Лепунов) is a Russian surname that is sometimes also romanized as Ljapunov, Liapunov or Ljapunow. Notable people with the surname include: * Alexey Lyapunov (1911–1973), Russian mathematician * Aleksandr Lyapunov (1857–1918), son of Mikhail (1820–1868), Russian mathematician and mechanician, after whom the following are named: ** Lyapunov dimension ** Lyapunov equation ** Lyapunov exponent ** Lyapunov function ** Lyapunov fractal ** Lyapunov stability ** Lyapunov's central limit theorem ** Lyapunov time ** Lyapunov vector ** Lyapunov (crater) * Boris Lyapunov (1862–1943), son of Mikhail (1820–1868), Russian expert in Slavic studies * Mikhail Lyapunov (1820–1868), Russian astronomer * Mikhail Nikolaevich Lyapunov (1848–1909), Russian military officer and lawyer * Prokopy Lyapunov (d. 1611), Russian statesman * Sergei Lyapunov (1859–1924), son of Mikhail (1820–1868), Russian composer * Zakhary Lyapunov Zakhary Petrovi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rotation
Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional object has an infinite number of possible central axes and rotational directions. If the rotation axis passes internally through the body's own center of mass, then the body is said to be ''autorotating'' or '' spinning'', and the surface intersection of the axis can be called a ''pole''. A rotation around a completely external axis, e.g. the planet Earth around the Sun, is called ''revolving'' or ''orbiting'', typically when it is produced by gravity, and the ends of the rotation axis can be called the ''orbital poles''. Mathematics Mathematically, a rotation is a rigid body movement which, unlike a translation, keeps a point fixed. This definition applies to rotations within both two and three dimensions (in a plane and in space, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continuous Function
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the mo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subharmonic Function
In mathematics, subharmonic and superharmonic functions are important classes of function (mathematics), functions used extensively in partial differential equations, complex analysis and potential theory. Intuitively, subharmonic functions are related to convex functions of one variable as follows. If the graph of a function, graph of a convex function and a line intersect at two points, then the graph of the convex function is ''below'' the line between those points. In the same way, if the values of a subharmonic function are no larger than the values of a harmonic function on the ''boundary'' of a ball (mathematics), ball, then the values of the subharmonic function are no larger than the values of the harmonic function also ''inside'' the ball. ''Superharmonic'' functions can be defined by the same description, only replacing "no larger" with "no smaller". Alternatively, a superharmonic function is just the additive inverse, negative of a subharmonic function, and for this rea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Positive Measure
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Constant ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Distribution (mathematics)
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative. Distributions are widely used in the theory of partial differential equations, where it may be easier to establish the existence of distributional solutions than classical solutions, or where appropriate classical solutions may not exist. Distributions are also important in physics and engineering where many problems naturally lead to differential equations whose solutions or initial conditions are singular, such as the Dirac delta function. A function f is normally thought of as on the in the function domain by "sending" a point x in its domain to the point f(x). Instead of acting on points, distribution theory reinterpr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radon Measure
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space ''X'' that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures. Motivation A common problem is to find a good notion of a measure on a topological space that is compatible with the topology in some sense. One way to do this is to define a measure on the Borel sets of the topological space. In general there are several problems with this: for example, such a measure may not have a well defined support. Another approach to measure theory is to restrict to locally compact Hausdorff spaces, and only consider the measures that correspond to positive linear functionals on the space of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dirichlet Problem
In mathematics, a Dirichlet problem is the problem of finding a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region. The Dirichlet problem can be solved for many PDEs, although originally it was posed for Laplace's equation. In that case the problem can be stated as follows: :Given a function ''f'' that has values everywhere on the boundary of a region in R''n'', is there a unique continuous function ''u'' twice continuously differentiable in the interior and continuous on the boundary, such that ''u'' is harmonic in the interior and ''u'' = ''f'' on the boundary? This requirement is called the Dirichlet boundary condition. The main issue is to prove the existence of a solution; uniqueness can be proved using the maximum principle. History The Dirichlet problem goes back to George Green, who studied the problem on general domains with general boundary condi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Henrik Petrini
Henrik Petrini (15 April 1863 – 6 October 1957) was a Swedish mathematician. His mathematical contributions are mainly connected with the theory of partial differential equations, in particular potential theory. He was born in Falun and received his PhD in 1890 from Uppsala University in mechanics, where he subsequently held a position as professor. In 1901 he moved to Växjö, where he worked as a lektor for mathematics and physics at the gymnasium. In 1914 he finally moved to Stockholm. He is best known for his counterexample of a continuous function for which the Newton potential is not twice differentiable. He was also interested in pedagogical and theological questions and was known to the general public for his radical writings. References * Lars Gårding Lars Gårding (7 March 1919 – 7 July 2014) was a Swedish mathematician. He made notable contributions to the study of partial differential equations and partial differential operators. He was a professor of ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Otto Hölder
Ludwig Otto Hölder (December 22, 1859 – August 29, 1937) was a German mathematician born in Stuttgart. Early life and education Hölder was the youngest of three sons of professor Otto Hölder (1811–1890), and a grandson of professor Christian Gottlieb Hölder (1776–1847); his two brothers also became professors. He first studied at the ''Polytechnikum'' (which today is the University of Stuttgart) and then in 1877 went to Berlin where he was a student of Leopold Kronecker, Karl Weierstrass, and Ernst Kummer. In 1877, he entered the University of Berlin and took his doctorate from the University of Tübingen in 1882. The title of his doctoral thesis was "Beiträge zur Potentialtheorie" ("Contributions to potential theory"). Following this, he went to the University of Leipzig but was unable to habilitation, habilitate there, instead earning a second doctorate and habilitation at the University of Göttingen, both in 1884. Academic career and later life He was unable to ge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |