HOME
*





Newton's Identities
In mathematics, Newton's identities, also known as the Girard–Newton formulae, give relations between two types of symmetric polynomials, namely between power sums and elementary symmetric polynomials. Evaluated at the roots of a monic polynomial ''P'' in one variable, they allow expressing the sums of the ''k''-th powers of all roots of ''P'' (counted with their multiplicity) in terms of the coefficients of ''P'', without actually finding those roots. These identities were found by Isaac Newton around 1666, apparently in ignorance of earlier work (1629) by Albert Girard. They have applications in many areas of mathematics, including Galois theory, invariant theory, group theory, combinatorics, as well as further applications outside mathematics, including general relativity. Mathematical statement Formulation in terms of symmetric polynomials Let ''x''1, ..., ''x''''n'' be variables, denote for ''k'' ≥ 1 by ''p''''k''(''x''1, ..., ''x''''n'') the ''k''-th power ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Homogeneous Symmetric Polynomial
In mathematics, specifically in algebraic combinatorics and commutative algebra, the complete homogeneous symmetric polynomials are a specific kind of symmetric polynomials. Every symmetric polynomial can be expressed as a polynomial expression in complete homogeneous symmetric polynomials. Definition The complete homogeneous symmetric polynomial of degree in variables , written for , is the sum of all monomials of total degree in the variables. Formally, :h_k (X_1, X_2, \dots,X_n) = \sum_ X_ X_ \cdots X_. The formula can also be written as: :h_k (X_1, X_2, \dots,X_n) = \sum_ X_^ X_^ \cdots X_^. Indeed, is just the multiplicity of in the sequence . The first few of these polynomials are :\begin h_0 (X_1, X_2, \dots,X_n) &= 1, \\0pxh_1 (X_1, X_2, \dots,X_n) &= \sum_ X_j, \\ h_2 (X_1, X_2, \dots,X_n) &= \sum_ X_j X_k, \\ h_3 (X_1, X_2, \dots,X_n) &= \sum_ X_j X_k X_l. \end Thus, for each nonnegative integer , there exists exactly one complete homogeneous symmetric polynomi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, unle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cycle Index
Cycle, cycles, or cyclic may refer to: Anthropology and social sciences * Cyclic history, a theory of history * Cyclical theory, a theory of American political history associated with Arthur Schlesinger, Sr. * Social cycle, various cycles in social sciences ** Business cycle, the downward and upward movement of gross domestic product (GDP) around its ostensible, long-term growth trend Arts, entertainment, and media Films * ''Cycle'' (2008 film), a Malayalam film * ''Cycle'' (2017 film), a Marathi film Literature * ''Cycle'' (magazine), an American motorcycling enthusiast magazine * Literary cycle, a group of stories focused on common figures Music Musical terminology * Cycle (music), a set of musical pieces that belong together **Cyclic form, a technique of construction involving multiple sections or movements **Interval cycle, a collection of pitch classes generated from a sequence of the same interval class **Song cycle, individually complete songs designed to be performe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bell Polynomial
In combinatorial mathematics, the Bell polynomials, named in honor of Eric Temple Bell, are used in the study of set partitions. They are related to Stirling and Bell numbers. They also occur in many applications, such as in the Faà di Bruno's formula. Definitions Exponential Bell polynomials The ''partial'' or ''incomplete'' exponential Bell polynomials are a triangular array of polynomials given by :B_(x_1,x_2,\dots,x_) = \sum \left(\right)^\left(\right)^\cdots\left(\right)^, where the sum is taken over all sequences ''j''1, ''j''2, ''j''3, ..., ''j''''n''−''k''+1 of non-negative integers such that these two conditions are satisfied: :j_1 + j_2 + \cdots + j_ = k, :j_1 + 2 j_2 + 3 j_3 + \cdots + (n-k+1)j_ = n. The sum :B_n(x_1,\dots,x_n)=\sum_^n B_(x_1,x_2,\dots,x_) is called the ''n''th ''complete exponential Bell polynomial''. Ordinary Bell polynomials Likewise, the partial ''ordinary'' Bell polynomial is defined by :\hat_(x_1,x_2,\ldots,x_) = \sum \frac x_1^ x_2^ \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Faa Di Bruno's Formula
The Federal Aviation Administration (FAA) is the largest transportation agency of the U.S. government and regulates all aspects of civil aviation in the country as well as over surrounding international waters. Its powers include air traffic management, certification of personnel and aircraft, setting standards for airports, and protection of U.S. assets during the launch or re-entry of commercial space vehicles. Powers over neighboring international waters were delegated to the FAA by authority of the International Civil Aviation Organization. Created in , the FAA replaced the former Civil Aeronautics Administration (CAA) and later became an agency within the U.S. Department of Transportation. Major functions The FAA's roles include: *Regulating U.S. commercial space transportation *Regulating air navigation facilities' geometric and flight inspection standards *Encouraging and developing civil aeronautics, including new aviation technology *Issuing, suspending, or revoking ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Monomial
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: # A monomial, also called power product, is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. For example, x^2yz^3=xxyzzz is a monomial. The constant 1 is a monomial, being equal to the empty product and to x^0 for any variable x. If only a single variable x is considered, this means that a monomial is either 1 or a power x^n of x, with n a positive integer. If several variables are considered, say, x, y, z, then each can be given an exponent, so that any monomial is of the form x^a y^b z^c with a,b,c non-negative integers (taking note that any exponent 0 makes the corresponding factor equal to 1). # A monomial is a monomial in the first sense multiplied by a nonzero constant, called the coefficient of the monomial. A monomial in the first sense is a special c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Theorem Of Symmetric Polynomials
In mathematics, specifically in commutative algebra, the elementary symmetric polynomials are one type of basic building block for symmetric polynomials, in the sense that any symmetric polynomial can be expressed as a polynomial in elementary symmetric polynomials. That is, any symmetric polynomial is given by an expression involving only additions and multiplication of constants and elementary symmetric polynomials. There is one elementary symmetric polynomial of degree in variables for each positive integer , and it is formed by adding together all distinct products of distinct variables. Definition The elementary symmetric polynomials in variables , written for , are defined by :\begin e_1 (X_1, X_2, \dots,X_n) &= \sum_ X_j,\\ e_2 (X_1, X_2, \dots,X_n) &= \sum_ X_j X_k,\\ e_3 (X_1, X_2, \dots,X_n) &= \sum_ X_j X_k X_l,\\ \end and so forth, ending with : e_n (X_1, X_2, \dots,X_n) = X_1 X_2 \cdots X_n. In general, for we define : e_k (X_1 , \ldots , X_n )=\sum_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Faddeev–LeVerrier Algorithm
In mathematics (linear algebra), the Faddeev–LeVerrier algorithm is a recursive method to calculate the coefficients of the characteristic polynomial p_A(\lambda)=\det (\lambda I_n - A) of a square matrix, , named after Dmitry Konstantinovich Faddeev and Urbain Le Verrier. Calculation of this polynomial yields the eigenvalues of as its roots; as a matrix polynomial in the matrix itself, it vanishes by the Cayley–Hamilton theorem. Computing the characteristic polynomial directly from the definition of the determinant is computationally cumbersome insofar as it introduces a new symbolic quantity \lambda; by contrast, the Faddeev-Le Verrier algorithm works directly with coefficients of matrix A. The algorithm has been independently rediscovered several times in different forms. It was first published in 1840 by Urbain Le Verrier, subsequently redeveloped by P. Horst, Jean-Marie Souriau, in its present form here by Faddeev and Sominsky, and further by J. S. Frame, and others. ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adjugate Matrix
In linear algebra, the adjugate or classical adjoint of a square matrix is the transpose of its cofactor matrix and is denoted by . It is also occasionally known as adjunct matrix, or "adjoint", though the latter today normally refers to a different concept, the adjoint operator which is the conjugate transpose of the matrix. The product of a matrix with its adjugate gives a diagonal matrix (entries not on the main diagonal are zero) whose diagonal entries are the determinant of the original matrix: :\mathbf \operatorname(\mathbf) = \det(\mathbf) \mathbf, where is the identity matrix of the same size as . Consequently, the multiplicative inverse of an invertible matrix can be found by dividing its adjugate by its determinant. Definition The adjugate of is the transpose of the cofactor matrix of , :\operatorname(\mathbf) = \mathbf^\mathsf. In more detail, suppose is a unital commutative ring and is an matrix with entries from . The -''minor'' of , denoted , is the determ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cayley–Hamilton Theorem
In linear algebra, the Cayley–Hamilton theorem (named after the mathematicians Arthur Cayley and William Rowan Hamilton) states that every square matrix over a commutative ring (such as the real or complex numbers or the integers) satisfies its own characteristic equation. If is a given matrix and is the identity matrix, then the characteristic polynomial of is defined as p_A(\lambda)=\det(\lambda I_n-A), where is the determinant operation and is a variable for a scalar element of the base ring. Since the entries of the matrix (\lambda I_n-A) are (linear or constant) polynomials in , the determinant is also a degree- monic polynomial in , p_A(\lambda) = \lambda^n + c_\lambda^ + \cdots + c_1\lambda + c_0~. One can create an analogous polynomial p_A(A) in the matrix instead of the scalar variable , defined as p_A(A) = A^n + c_A^ + \cdots + c_1A + c_0I_n~. The Cayley–Hamilton theorem states that this polynomial expression is equal to the zero matrix, which is to say tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




NC (complexity)
In computational complexity theory, the class NC (for "Nick's Class") is the set of decision problems decidable in polylogarithmic time on a parallel computer with a polynomial number of processors. In other words, a problem with input size ''n'' is in NC if there exist constants ''c'' and ''k'' such that it can be solved in time using parallel processors. Stephen Cook coined the name "Nick's class" after Nick Pippenger, who had done extensive research on circuits with polylogarithmic depth and polynomial size.Arora & Barak (2009) p.120 Just as the class P can be thought of as the tractable problems ( Cobham's thesis), so NC can be thought of as the problems that can be efficiently solved on a parallel computer.Arora & Barak (2009) p.118 NC is a subset of P because polylogarithmic parallel computations can be simulated by polynomial-time sequential ones. It is unknown whether NC = P, but most researchers suspect this to be false, meaning that there are probably some tractable pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]