HOME
*



picture info

NSA Encryption Systems
The National Security Agency took over responsibility for all U.S. Government encryption systems when it was formed in 1952. The technical details of most NSA-approved systems are still Classified information in the United States, classified, but much more about its early systems have become known and its most modern systems share at least some features with commercial products. Rotor machines from the 1940s and 1950s were mechanical marvels. The first generation electronic systems were quirky devices with cantankerous punched card readers for loading key (cryptography), keys and failure-prone, tricky-to-maintain vacuum tube circuitry. Late 20th century systems are just Black box (systems), black boxes, often literally. In fact they are called ''blacker (security), blackers'' in NSA parlance because they convert plaintext classified signals (''red'') into encrypted unclassified ciphertext signals (''black''). They typically have electrical connectors for the red signals, the black ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

National Security Agency
The National Security Agency (NSA) is a national-level intelligence agency of the United States Department of Defense, under the authority of the Director of National Intelligence (DNI). The NSA is responsible for global monitoring, collection, and processing of information and data for foreign and domestic intelligence and counterintelligence purposes, specializing in a discipline known as signals intelligence (SIGINT). The NSA is also tasked with the protection of U.S. communications networks and information systems. The NSA relies on a variety of measures to accomplish its mission, the majority of which are clandestine. The existence of the NSA was not revealed until 1975. The NSA has roughly 32,000 employees. Originating as a unit to decipher coded communications in World War II, it was officially formed as the NSA by President Harry S. Truman in 1952. Between then and the end of the Cold War, it became the largest of the U.S. intelligence organizations in terms of pers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Key Escrow
Key escrow (also known as a "fair" cryptosystem) is an arrangement in which the keys needed to decrypt encrypted data are held in escrow so that, under certain circumstances, an authorized third party may gain access to those keys. These third parties may include businesses, who may want access to employees' secure business-related communications, or governments, who may wish to be able to view the contents of encrypted communications (also known as ''exceptional access''). The technical problem is a largely structural one. Access to protected information must be provided ''only'' to the intended recipient and at least one third party. The third party should be permitted access only under carefully controlled conditions, as for instance, a court order. Thus far, no system design has been shown to meet this requirement fully on a technical basis alone. All proposed systems also require correct functioning of some social linkage, as for instance the process of request for access, ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Clipper Chip
The Clipper chip was a chipset that was developed and promoted by the United States National Security Agency (NSA) as an encryption device that secured "voice and data messages" with a built-in backdoor that was intended to "allow Federal, State, and local law enforcement officials the ability to decode intercepted voice and data transmissions." It was intended to be adopted by telecommunications companies for voice transmission. Introduced in 1993, it was entirely defunct by 1996. Key escrow The Clipper chip used a data encryption algorithm called Skipjack to transmit information and the Diffie–Hellman key exchange-algorithm to distribute the cryptokeys between the peers. Skipjack was invented by the National Security Agency of the U.S. Government; this algorithm was initially classified SECRET, which prevented it from being subjected to peer review from the encryption research community. The government did state that it used an 80-bit key, that the algorithm was symmetric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Benign Fill
Malignancy () is the tendency of a medical condition to become progressively worse. Malignancy is most familiar as a characterization of cancer. A ''malignant'' tumor contrasts with a non-cancerous ''benign'' tumor in that a malignancy is not self-limited in its growth, is capable of invading into adjacent tissues, and may be capable of spreading to distant tissues. A benign tumor has none of those properties. Malignancy in cancers is characterized by anaplasia, invasiveness, and metastasis. Malignant tumors are also characterized by genome instability, so that cancers, as assessed by whole genome sequencing, frequently have between 10,000 and 100,000 mutations in their entire genomes. Cancers usually show tumour heterogeneity, containing multiple subclones. They also frequently have reduced expression of DNA repair enzymes due to epigenetic methylation of DNA repair genes or altered microRNAs that control DNA repair gene expression. Tumours can be detected through the visuali ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Key Management
Key management refers to management of cryptographic keys in a cryptosystem. This includes dealing with the generation, exchange, storage, use, crypto-shredding (destruction) and replacement of keys. It includes cryptographic protocol design, key servers, user procedures, and other relevant protocols. Key management concerns keys at the user level, either between users or systems. This is in contrast to key scheduling, which typically refers to the internal handling of keys within the operation of a cipher. Successful key management is critical to the security of a cryptosystem. It is the more challenging side of cryptography in a sense that it involves aspects of social engineering such as system policy, user training, organizational and departmental interactions, and coordination between all of these elements, in contrast to pure mathematical practices that can be automated. Types of keys Cryptographic systems may use different types of keys, with some systems using more ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Link Encryption
Link encryption is an approach to communications security that encrypts and decrypts all network traffic at each network routing point (e.g. network switch, or node through which it passes) until arrival at its final destination. This repeated decryption and encryption is necessary to allow the routing information contained in each transmission to be read and employed further to direct the transmission toward its destination, before which it is re-encrypted. This contrasts with end-to-end encryption where internal information, but not the header/routing information, is encrypted by the sender at the point of origin and only decrypted by the intended recipient. Link encryption offers two main advantages: * encryption is automatic so there is less opportunity for human error. * if the communications link operates continuously and carries an unvarying level of traffic, link encryption defeats traffic analysis. On the other hand, end-to-end encryption ensures only the intended r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Traffic Analysis
Traffic analysis is the process of intercepting and examining messages in order to deduce information from patterns in communication, it can be performed even when the messages are encrypted. In general, the greater the number of messages observed, the greater information be inferred. Traffic analysis can be performed in the context of military intelligence, counter-intelligence, or pattern-of-life analysis, and is also a concern in computer security. Traffic analysis tasks may be supported by dedicated computer software programs. Advanced traffic analysis techniques which may include various forms of social network analysis. Traffic analysis has historically been a vital technique in cryptanalysis, especially when the attempted crack depends on successfully seeding a known-plaintext attack, which often requires an inspired guess based on how specific the operational context might likely influence what an adversary communicates, which may be sufficient to establish a short crib. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Advanced Encryption Standard
The Advanced Encryption Standard (AES), also known by its original name Rijndael (), is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001. AES is a variant of the Rijndael block cipher developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen, who submitted a proposal to NIST during the AES selection process. Rijndael is a family of ciphers with different key and block sizes. For AES, NIST selected three members of the Rijndael family, each with a block size of 128 bits, but three different key lengths: 128, 192 and 256 bits. AES has been adopted by the U.S. government. It supersedes the Data Encryption Standard (DES), which was published in 1977. The algorithm described by AES is a symmetric-key algorithm, meaning the same key is used for both encrypting and decrypting the data. In the United States, AES was announced by the NIST as U.S. FIPS PUB 197 (FIPS 197) on Novemb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Skipjack (cipher)
In cryptography, Skipjack is a block cipher—an algorithm for encryption—developed by the U.S. National Security Agency (NSA). Initially classified, it was originally intended for use in the controversial Clipper chip. Subsequently, the algorithm was declassified. History of Skipjack Skipjack was proposed as the encryption algorithm in a US government-sponsored scheme of key escrow, and the cipher was provided for use in the Clipper chip, implemented in tamperproof hardware. Skipjack is used only for encryption; the key escrow is achieved through the use of a separate mechanism known as the Law Enforcement Access Field (LEAF). The algorithm was initially secret, and was regarded with considerable suspicion by many for that reason. It was declassified on 24 June 1998, shortly after its basic design principle had been discovered independently by the public cryptography community. To ensure public confidence in the algorithm, several academic researchers from outside the gove ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type 1 Encryption
The U.S. National Security Agency (NSA) used to rank cryptographic products or algorithms by a certification called product types. Product types were defined in the National Information Assurance Glossary (CNSSI No. 4009, 2010) which used to define Type 1, 2, 3, and 4 products. The definitions of numeric type products have been removed from the government lexicon and are no longer used in government procurement efforts. Type 1 product A Type 1 product was a device or system certified by NSA for use in cryptographically securing classified U.S. Government information. A Type 1 product was defined as: Cryptographic equipment, assembly or component classified or certified by NSA for encrypting and decrypting classified and sensitive national security information when appropriately keyed. Developed using established NSA business processes and containing NSA approved algorithms. Used to protect systems requiring the most stringent protection mechanisms. They were available to U.S. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nonrepudiation
Non-repudiation refers to a situation where a statement's author cannot successfully dispute its authorship or the validity of an associated contract. The term is often seen in a legal setting when the authenticity of a signature is being challenged. In such an instance, the authenticity is being "repudiated". For example, Mallory buys a cell phone for $100, writes a paper cheque as payment, and signature, signs the cheque with a pen. Later, she finds that she can't afford it, and claims that Cheque fraud, the cheque is a forgery. The signature guarantees that only Mallory could have signed the cheque, and so Mallory's bank must pay the cheque. This is non-repudiation; Mallory cannot repudiate the cheque. In practice, pen-and-paper signatures aren't hard to Signature forgery, forge, but digital signatures can be very hard to break. In security In general, ''non-repudiation'' involves associating actions or changes with a unique individual. For example, a secure area may use a Key ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]