Muckenhoupt Weights
   HOME
*





Muckenhoupt Weights
In mathematics, the class of Muckenhoupt weights consists of those weights for which the Hardy–Littlewood maximal operator is bounded on . Specifically, we consider functions on and their associated maximal functions defined as : M(f)(x) = \sup_ \frac \int_ , f, , where is the ball in with radius and center at . Let , we wish to characterise the functions for which we have a bound : \int , M(f)(x), ^p \, \omega(x) dx \leq C \int , f, ^p \, \omega(x)\, dx, where depends only on and . This was first done by Benjamin Muckenhoupt. Definition For a fixed , we say that a weight belongs to if is locally integrable and there is a constant such that, for all balls in , we have :\left(\frac \int_B \omega(x) \, dx \right)\left(\frac \int_B \omega(x)^ \, dx \right)^\frac \leq C < \infty, where is the of , and is a rea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Singular Integrals
In mathematics, singular integrals are central to harmonic analysis and are intimately connected with the study of partial differential equations. Broadly speaking a singular integral is an integral operator : T(f)(x) = \int K(x,y)f(y) \, dy, whose kernel function ''K'' : R''n''×R''n'' → R is singular along the diagonal ''x'' = ''y''. Specifically, the singularity is such that , ''K''(''x'', ''y''), is of size , ''x'' − ''y'', −''n'' asymptotically as , ''x'' − ''y'',  → 0. Since such integrals may not in general be absolutely integrable, a rigorous definition must define them as the limit of the integral over , ''y'' − ''x'',  > ε as ε → 0, but in practice this is a technicality. Usually further assumptions are required to obtain results such as their boundedness on ''L''''p''(R''n''). The Hilbert transform The archetypal singular integral operator is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real Analysis
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability. Real analysis is distinguished from complex analysis, which deals with the study of complex numbers and their functions. Scope Construction of the real numbers The theorems of real analysis rely on the properties of the real number system, which must be established. The real number system consists of an uncountable set (\mathbb), together with two binary operations denoted and , and an order denoted . The operations make the real numbers a field, and, along with the order, an ordered field. The real number system is the unique ''complete ordered field'', in the sense that any other complete ordered field is isomorphic to it. Intuitively, completeness means ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hausdorff Measure
In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in ,∞to each set in \R^n or, more generally, in any metric space. The zero-dimensional Hausdorff measure is the number of points in the set (if the set is finite) or ∞ if the set is infinite. Likewise, the one-dimensional Hausdorff measure of a simple curve in \R^n is equal to the length of the curve, and the two-dimensional Hausdorff measure of a Lebesgue-measurable subset of \R^2 is proportional to the area of the set. Thus, the concept of the Hausdorff measure generalizes the Lebesgue measure and its notions of counting, length, and area. It also generalizes volume. In fact, there are ''d''-dimensional Hausdorff measures for any ''d'' ≥ 0, which is not necessarily an integer. These measures are fundamenta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harmonic Measure
In mathematics, especially potential theory, harmonic measure is a concept related to the theory of harmonic functions that arises from the solution of the classical Dirichlet problem. In probability theory, the harmonic measure of a subset of the boundary of a bounded domain in Euclidean space R^n, n\geq 2 is the probability that a Brownian motion started inside a domain hits that subset of the boundary. More generally, harmonic measure of an Itō diffusion ''X'' describes the distribution of ''X'' as it hits the boundary of ''D''. In the complex plane, harmonic measure can be used to estimate the modulus of an analytic function inside a domain ''D'' given bounds on the modulus on the boundary of the domain; a special case of this principle is Hadamard's three-circle theorem. On simply connected planar domains, there is a close connection between harmonic measure and the theory of conformal maps. The term ''harmonic measure'' was introduced by Rolf Nevanlinna in 1928 for planar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jacobian Matrix And Determinant
In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. Suppose is a function such that each of its first-order partial derivatives exist on . This function takes a point as input and produces the vector as output. Then the Jacobian matrix of is defined to be an matrix, denoted by , whose th entry is \mathbf J_ = \frac, or explicitly :\mathbf J = \begin \dfrac & \cdots & \dfrac \end = \begin \nabla^ f_1 \\ \vdots \\ \nabla^ f_m \end = \begin \dfrac & \cdots & \dfrac\\ \vdots & \ddots & \vdots\\ \dfrac & \cdots ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the "instantaneous rate of change", the ratio of the instantaneous change in the dependent variable to that of the independent variable. Derivatives can be generalized to functions of several real variables. In this generalization, the derivativ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasiconformal Mapping
In mathematical complex analysis, a quasiconformal mapping, introduced by and named by , is a homeomorphism between plane domains which to first order takes small circles to small ellipses of bounded eccentricity. Intuitively, let ''f'' : ''D'' → ''D''′ be an orientation-preserving homeomorphism between open sets in the plane. If ''f'' is continuously differentiable, then it is ''K''-quasiconformal if the derivative of ''f'' at every point maps circles to ellipses with eccentricity bounded by ''K''. Definition Suppose ''f'' : ''D'' → ''D''′ where ''D'' and ''D''′ are two domains in C. There are a variety of equivalent definitions, depending on the required smoothness of ''f''. If ''f'' is assumed to have continuous partial derivatives, then ''f'' is quasiconformal provided it satisfies the Beltrami equation for some complex valued Lebesgue measurable μ satisfying sup , μ,   0. Then ''f'' satisfies () precisely when it is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Doubling Measure
In mathematics, a metric space with metric is said to be doubling if there is some doubling constant such that for any and , it is possible to cover the ball with the union of at most balls of radius . The base-2 logarithm of is called the doubling dimension of . Euclidean spaces \mathbb^d equipped with the usual Euclidean metric are examples of doubling spaces where the doubling constant depends on the dimension . For example, in one dimension, ; and in two dimensions, . In general, Euclidean space \mathbb^d has doubling dimension \Theta(d). Assouad's embedding theorem An important question in metric space geometry is to characterize those metric spaces that can be embedded in some Euclidean space by a bi-Lipschitz function. This means that one can essentially think of the metric space as a subset of Euclidean space. Not all metric spaces may be embedded in Euclidean space. Doubling metric spaces, on the other hand, would seem like they have more of a chance, since ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John–Nirenberg Inequality
In harmonic analysis in mathematics, a function of bounded mean oscillation, also known as a BMO function, is a real-valued function whose mean oscillation is bounded (finite). The space of functions of bounded mean oscillation (BMO), is a function space that, in some precise sense, plays the same role in the theory of Hardy spaces ''Hp'' that the space ''L''∞ of essentially bounded functions plays in the theory of ''Lp''-spaces: it is also called John–Nirenberg space, after Fritz John and Louis Nirenberg who introduced and studied it for the first time. Historical note According to , the space of functions of bounded mean oscillation was introduced by in connection with his studies of mappings from a bounded set belonging to R''n'' into R''n'' and the corresponding problems arising from elasticity theory, precisely from the concept of elastic strain: the basic notation was introduced in a closely following paper by , where several properties of this function spaces were ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]