Mu3e
   HOME
*





Mu3e
Mu3e is a particle physics experiment at the Paul Scherrer Institute, searching for decays of anti-muons (''Mu'') to an electron and two positrons (''3e''). This decay is extremely unlikely in the Standard Model of particle physics, as it changes the lepton number. Several new theories, especially supersymmetric ones, predict a much more frequent decay. Searching for this decay allows a test of these theories, even if they cannot be tested directly in other experiments like at the LHC. It has also been shown the experiment is sensitive to probe new light dark sector particles such as dark photon. Mu3e is constructed at the Paul Scherrer Institute. It is planned to create the world's most intense muon beam which will allow to analyze two billion decays per second. This rate is necessary to study more than 1016 muon decays in total. Important backgrounds are the decays \mu^+ \to e^+e^-e^+\bar\nu_e and \mu^+ \to e^+\bar\nu_e. To distinguish between signal and background, the detector h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mu To E Gamma
The Mu to E Gamma (MEG) is a particle physics experiment dedicated to measuring the decay of the muon into an electron and a photon, a decay mode which is heavily suppressed in the Standard Model by lepton flavour conservation, but enhanced in supersymmetry and grand unified theories. It is located at the Paul Scherrer Institute and began taking data September 2008. Results In May 2016 the MEG experiment published the world's leading upper limit on the branching ratio of this decay: :\Beta ( \mu^+ \to e^+ \gamma) < 4.2 \times 10^ at 90% confidence level, based on data collected in 2009–2013. This improved the MEG limit from the prior MEGA experiment by a factor of about 28.


Apparatus

MEG uses a continuous muon beam (3 × 107/s) incident on a plastic target. The decay is reconstructed to look for a back-to-back positron and monochrom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, but ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quarks cannot exist on their own but form hadrons. Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons. Two baryons, the proton and the neutron, make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredths of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electronvolt
In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acc ... gained by a single electron accelerating from rest through an Voltage, electric potential difference of one volt in vacuum. When used as a Units of energy, unit of energy, the numerical value of 1 eV in joules (symbol J) is equivalent to the numerical value of the Electric charge, charge of an electron in coulombs (symbol C). Under the 2019 redefinition of the SI base units, this sets 1 eV equal to the exact value Historically, the electronvolt was devised as a standard unit of measure through its usefulness in Particle accelerator#Electrostatic particle accelerators, electrostatic particle accel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mu2e
Mu2e, or the Muon-to-Electron Conversion Experiment, is a particle physics experiment at Fermilab in the US. The goal of the experiment is to identify physics beyond the Standard Model, namely, the particle decay, conversion of muons to electrons without the emission of neutrinos, which occurs in a number of theoretical models. Project co-spokesperson Jim Miller likens this process to neutrino oscillation, but for charged leptons. Observing this process will help to narrow the range of plausible theories. The experiment will be 10,000 times more sensitive than previous muon to electron conversion experiments, and probe energy scales up to 10,000 TeV. Timeline Prior work Physicists have been searching for Flavour (particle physics), flavor violation since the 1940s. Flavor violation among neutrinos was proven in 1998 at the Super-Kamiokande experiment in Japan. In 1989, Russian physicists Vladimir Lobashev and Rashid Djilkibaev proposed an experiment to search for lepton flavor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Branching Fraction
In particle physics and nuclear physics, the branching fraction (or branching ratio) for a decay is the fraction of particles which decay by an individual decay mode or with respect to the total number of particles which decay. It applies to either the radioactive decay of atoms or the decay of elementary particles. It is equal to the ratio of the partial decay constant to the overall decay constant. Sometimes a partial half-life is given, but this term is misleading; due to competing modes it is not true that half of the particles will decay through a particular decay mode after its partial half-life. The partial half-life is merely an alternate way to specify the partial decay constant , the two being related through: :t_ = \frac. For example, for spontaneous decays of 132 Cs, 98.1% are ε (electron capture) or β+ (positron) decays, and 1.9% are β− (electron) decays. The partial decay constants can be calculated from the branching fraction and the half-life of 132Cs (6.479& ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tesla (unit)
The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre. The unit was announced during the General Conference on Weights and Measures in 1960 and is named in honour of Serbian-American electrical and mechanical engineer Nikola Tesla, upon the proposal of the Slovenian electrical engineer France Avčin. Definition A particle, carrying a charge of one coulomb (C), and moving perpendicularly through a magnetic field of one tesla, at a speed of one metre per second (m/s), experiences a force with magnitude one newton (N), according to the Lorentz force law. That is, : \text = \dfrac. As an SI derived unit, the tesla can also be expressed in terms of other units. For example, a magnetic flux of 1 weber (Wb) through a surface of one square meter is equal to a magnetic flux density of 1 tesla.''The International System of Units (SI), 8th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetic Field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, and are created by electric currents such as those used in electromagnets, and by electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, cal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scintillation Counter
A scintillation counter is an instrument for detecting and measuring ionizing radiation by using the excitation effect of incident radiation on a scintillating material, and detecting the resultant light pulses. It consists of a scintillator which generates photons in response to incident radiation, a sensitive photodetector (usually a photomultiplier tube (PMT), a charge-coupled device (CCD) camera, or a photodiode), which converts the light to an electrical signal and electronics to process this signal. Scintillation counters are widely used in radiation protection, assay of radioactive materials and physics research because they can be made inexpensively yet with good quantum efficiency, and can measure both the intensity and the energy of incident radiation. History The first electronic scintillation counter was invented in 1944 by Sir Samuel Curran whilst he was working on the Manhattan Project at the University of California at Berkeley. There was a requirement to measur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semiconductor Detector
A semiconductor detector in ionizing radiation detection physics is a device that uses a semiconductor (usually silicon or germanium) to measure the effect of incident charged particles or photons. Semiconductor detectors find broad application for radiation protection, gamma and X-ray spectrometry, and as particle detectors. Detection mechanism In semiconductor detectors, ionizing radiation is measured by the number of charge carriers set free in the detector material which is arranged between two electrodes, by the radiation. Ionizing radiation produces free electrons and electron holes. The number of electron-hole pairs is proportional to the energy of the radiation to the semiconductor. As a result, a number of electrons are transferred from the valence band to the conduction band, and an equal number of holes are created in the valence band. Under the influence of an electric field, electrons and holes travel to the electrodes, where they result in a pulse that can b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiple Scattering
Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiation) in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections of radiation that undergo scattering are often called ''diffuse reflections'' and unscattered reflections are called ''specular'' (mirror-like) reflections. Originally, the term was confined to light scattering (going back at least as far as Isaac Newton in the 17th century). As more "ray"-like phenomena were discovered, the idea of scattering was extended to them, so that William Herschel could refer to the scattering of "heat rays" (not then recognized as electromagnetic in nature) in 1800. John Tyndall, a pioneer in light scattering researc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Picosecond
A picosecond (abbreviated as ps) is a unit of time in the International System of Units (SI) equal to 10−12 or (one trillionth) of a second. That is one trillionth, or one millionth of one millionth of a second, or 0.000 000 000 001 seconds. A picosecond is to one second as one second is to approximately 31,689 years. Multiple technical approaches achieve imaging within single-digit picoseconds: for example, the streak camera or intensified CCD (ICCD) cameras are able to picture the motion of light. One picosecond is equal to 1000 femtoseconds, or 1/1000 nanoseconds. Because the next SI unit is 1000 times larger, measurements of 10−11 and 10−10 second are typically expressed as tens or hundreds of picoseconds. Some notable measurements in this range include: * 1.0 picoseconds (1.0 ps) – cycle time for electromagnetic frequency 1 terahertz (THz) (1 x 1012 hertz), an inverse unit. This corresponds to a wavelength of 0.3 mm, as can be calculated by m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paul Scherrer Institute
The Paul Scherrer Institute (PSI) is a multi-disciplinary research institute for natural and engineering sciences in Switzerland. It is located in the Canton of Aargau in the municipalities Villigen and Würenlingen on either side of the River Aare, and covers an area over 35 hectares in size. Like ETH Zurich and EPFL, PSI belongs to the Swiss Federal Institutes of Technology Domain of the Swiss Confederation. The PSI employs around 2,100 people. It conducts basic and applied research in the fields of matter and materials, human health, and energy and the environment. About 37% of PSI's research activities focus on material sciences, 24% on life sciences, 19% on general energy, 11% on nuclear energy and safety, and 9% on particle physics. PSI develops, builds and operates large and complex research facilities and makes them available to the national and international scientific communities. In 2017, for example, more than 2,500 researchers from 60 different countries came to PS ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]