Mathieu Transformation
   HOME
*





Mathieu Transformation
The Mathieu transformations make up a subgroup of canonical transformations preserving the differential form :\sum_i p_i \delta q_i=\sum_i P_i \delta Q_i \, The transformation is named after the French mathematician Émile Léonard Mathieu. Details In order to have this invariance, there should exist at least one relation between q_i and Q_i only (without any p_i,P_i involved). : \begin \Omega_1(q_1,q_2,\ldots,q_n,Q_1,Q_2,\ldots Q_n) & =0 \\ & \ \ \vdots\\ \Omega_m(q_1,q_2,\ldots,q_n,Q_1,Q_2,\ldots Q_n) & =0 \end where 1 < m \le n. When m=n a Mathieu transformation becomes a .


See also

*

Canonical Transformation
In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates that preserves the form of Hamilton's equations. This is sometimes known as form invariance. It need not preserve the form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations (a useful method for calculating conserved quantities) and Liouville's theorem (itself the basis for classical statistical mechanics). Since Lagrangian mechanics is based on generalized coordinates, transformations of the coordinates do not affect the form of Lagrange's equations and, hence, do not affect the form of Hamilton's equations if we simultaneously change the momentum by a Legendre transformation into P_i=\frac. Therefore, coordinate transformations (also called point transformations) are a ''type'' of canonical transformation. However, the class of canonical transformations is much broader, since the old generalized ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Form
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. For instance, the expression is an example of a -form, and can be integrated over an interval contained in the domain of : :\int_a^b f(x)\,dx. Similarly, the expression is a -form that can be integrated over a surface : :\int_S (f(x,y,z)\,dx\wedge dy + g(x,y,z)\,dz\wedge dx + h(x,y,z)\,dy\wedge dz). The symbol denotes the exterior product, sometimes called the ''wedge product'', of two differential forms. Likewise, a -form represents a volume element that can be integrated over a region of space. In general, a -form is an object that may be integrated over a -dimensional manifold, and is homogeneous of degree in the coordinate differentials dx, dy, \ldots. On an -dimensional manifold, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Émile Léonard Mathieu
Émile Léonard Mathieu (; 15 May 1835, in Metz – 19 October 1890, in Nancy) was a French mathematician. He is known for his work in group theory and mathematical physics. He has given his name to the Mathieu functions, Mathieu groups and Mathieu transformation. He authored a treatise of mathematical physics in 6 volumes. Volume 1 is an exposition of the techniques to solve the differential equations of mathematical physics, and contains an account of the applications of Mathieu functions to electrostatics. Volume 2 deals with capillarity. Volumes 3 and 4 deal with electrostatics and magnetostatics. Volume 5 deals with electrodynamics, and volume 6 with elasticity. The asteroid An asteroid is a minor planet of the inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic or icy bodies with no atmosphere. ... 27947 Emilemathieu was named in his honour. Books ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Invariant (mathematics)
In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the area of a triangle is an invariant with respect to isometries of the Euclidean plane. The phrases "invariant under" and "invariant to" a transformation are both used. More generally, an invariant with respect to an equivalence relation is a property that is constant on each equivalence class. Invariants are used in diverse areas of mathematics such as geometry, topology, algebra and discrete mathematics. Some important classes of transformations are defined by an invariant they leave unchanged. For example, conformal maps are defined as transformations of the plane that preserve angles. The discovery of invariants is an important ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Relation (mathematics)
In mathematics, a relation on a set may, or may not, hold between two given set members. For example, ''"is less than"'' is a relation on the set of natural numbers; it holds e.g. between 1 and 3 (denoted as 1 is an asymmetric relation, but ≥ is not. Again, the previous 3 alternatives are far from being exhaustive; as an example over the natural numbers, the relation defined by is neither symmetric nor antisymmetric, let alone asymmetric. ; : for all , if and then . A transitive relation is irreflexive if and only if it is asymmetric. For example, "is ancestor of" is a transitive relation, while "is parent of" is not. ; : for all , if then or . This property is sometimes called "total", which is distinct from the definitions of "total" given in the section . ; : for all , or . This property is sometimes called "total", which is distinct from the definitions of "total" given in the section . ; : every nonempty subset of contains a minimal element with respect to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lagrange Point Transformation
In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates that preserves the form of Hamilton's equations. This is sometimes known as form invariance. It need not preserve the form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations (a useful method for calculating conserved quantities) and Liouville's theorem (itself the basis for classical statistical mechanics). Since Lagrangian mechanics is based on generalized coordinates, transformations of the coordinates do not affect the form of Lagrange's equations and, hence, do not affect the form of Hamilton's equations if we simultaneously change the momentum by a Legendre transformation into P_i=\frac. Therefore, coordinate transformations (also called point transformations) are a ''type'' of canonical transformation. However, the class of canonical transformations is much broader, since the old generalized c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Canonical Transformation
In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates that preserves the form of Hamilton's equations. This is sometimes known as form invariance. It need not preserve the form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations (a useful method for calculating conserved quantities) and Liouville's theorem (itself the basis for classical statistical mechanics). Since Lagrangian mechanics is based on generalized coordinates, transformations of the coordinates do not affect the form of Lagrange's equations and, hence, do not affect the form of Hamilton's equations if we simultaneously change the momentum by a Legendre transformation into P_i=\frac. Therefore, coordinate transformations (also called point transformations) are a ''type'' of canonical transformation. However, the class of canonical transformations is much broader, since the old generalized ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lanczos
__NOTOC__ Cornelius (Cornel) Lanczos ( hu, Lánczos Kornél, ; born as Kornél Lőwy, until 1906: ''Löwy (Lőwy) Kornél''; February 2, 1893 – June 25, 1974) was a Hungarian-American and later Hungarian-Irish mathematician and physicist. According to György Marx he was one of The Martians. Biography He was born in Fehérvár (Alba Regia), Fejér County, Kingdom of Hungary to Károly Lőwy and Adél Hahn. Lanczos' Ph.D. thesis (1921) was on relativity theory. He sent his thesis copy to Albert Einstein, and Einstein wrote back, saying: "I studied your paper as far as my present overload allowed. I believe I may say this much: this does involve competent and original brainwork, on the basis of which a doctorate should be obtainable ... I gladly accept the honorable dedication."Barbara Gellai (2010) ''The Intrinsic Nature of Things: the life and science of Cornelius Lanczos'', American Mathematical Society In 1924 he discovered an exact solution of the Einstein field equa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Edmund Whittaker
Sir Edmund Taylor Whittaker (24 October 1873 – 24 March 1956) was a British mathematician, physicist, and historian of science. Whittaker was a leading mathematical scholar of the early 20th-century who contributed widely to applied mathematics and was renowned for his research in mathematical physics and numerical analysis, including the theory of special functions, along with his contributions to astronomy, celestial mechanics, the history of physics, and digital signal processing. Among the most influential publications in Whittaker’s bibliography, he authored several popular reference works in mathematics, physics, and the history of science, including ''A Course of Modern Analysis'' (better known as ''Whittaker and Watson''), ''Analytical Dynamics of Particles and Rigid Bodies'', and ''A History of the Theories of Aether and Electricity''. Whittaker is also remembered for his role in the relativity priority dispute, as he credited Henri Poincaré and Hendrik Loren ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

A Treatise On The Analytical Dynamics Of Particles And Rigid Bodies
''A Treatise on the Analytical Dynamics of Particles and Rigid Bodies'' is a treatise and textbook on analytical dynamics by British mathematician Sir Edmund Taylor Whittaker. Initially published in 1904 by the Cambridge University Press, the book focuses heavily on the three-body problem and has since gone through four editions and has been translated to German and Russian. Considered a landmark book in English mathematics and physics, the treatise presented what was the state-of-the-art at the time of publication and, remaining in print for more than a hundred years, it is considered a classic textbook in the subject. Section 1 ''Introduction'' In addition to the original editions published in 1904, 1917, 1927, and 1937, a reprint of the fourth edition was released in 1989 with a new foreword by William Hunter McCrea. The book was very successful and received many positive reviews. A 2014 "biography" of the book's development wrote that it had "remarkable longevity" and noted ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mechanics
Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects result in displacements, or changes of an object's position relative to its environment. Theoretical expositions of this branch of physics has its origins in Ancient Greece, for instance, in the writings of Aristotle and Archimedes (see History of classical mechanics and Timeline of classical mechanics). During the early modern period, scientists such as Galileo, Kepler, Huygens, and Newton laid the foundation for what is now known as classical mechanics. As a branch of classical physics, mechanics deals with bodies that are either at rest or are moving with velocities significantly less than the speed of light. It can also be defined as the physical science that deals with the motion of and forces on bodies not in the quantum realm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]