In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, an invariant is a property of a
mathematical object
A mathematical object is an abstract concept arising in mathematics.
In the usual language of mathematics, an ''object'' is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical p ...
(or a
class
Class or The Class may refer to:
Common uses not otherwise categorized
* Class (biology), a taxonomic rank
* Class (knowledge representation), a collection of individuals or objects
* Class (philosophy), an analytical concept used differentl ...
of mathematical objects) which remains unchanged after
operations or
transformations of a certain type are applied to the objects.
The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the
area
Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape
A shape or figure is a graphics, graphical representation of an obje ...
of a
triangle
A triangle is a polygon with three Edge (geometry), edges and three Vertex (geometry), vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, an ...
is an invariant with respect to
isometries
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' mea ...
of the
Euclidean plane
In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions of ...
. The phrases "invariant under" and "invariant to" a transformation are both used. More generally, an invariant with respect to an
equivalence relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation.
Each equivalence relation ...
is a property that is constant on each
equivalence class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a ...
.
Invariants are used in diverse areas of mathematics such as
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
,
topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
,
algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics.
Elementary a ...
and
discrete mathematics. Some important classes of transformations are defined by an invariant they leave unchanged. For example,
conformal maps are defined as transformations of the plane that preserve
angle
In Euclidean geometry, an angle is the figure formed by two Ray (geometry), rays, called the ''Side (plane geometry), sides'' of the angle, sharing a common endpoint, called the ''vertex (geometry), vertex'' of the angle.
Angles formed by two ...
s. The discovery of invariants is an important step in the process of classifying mathematical objects.
Examples
A simple example of invariance is expressed in our ability to
count
Count (feminine: countess) is a historical title of nobility in certain European countries, varying in relative status, generally of middling rank in the hierarchy of nobility. Pine, L. G. ''Titles: How the King Became His Majesty''. New York: ...
. For a
finite set
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example,
:\
is a finite set with five elements. Th ...
of objects of any kind, there is a number to which we always arrive, regardless of the
order in which we count the objects in the
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
. The quantity—a
cardinal number
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. Th ...
—is associated with the set, and is invariant under the process of counting.
An
identity
Identity may refer to:
* Identity document
* Identity (philosophy)
* Identity (social science)
* Identity (mathematics)
Arts and entertainment Film and television
* ''Identity'' (1987 film), an Iranian film
* ''Identity'' (2003 film), ...
is an equation that remains true for all values of its variables. There are also
inequalities
Inequality may refer to:
Economics
* Attention inequality, unequal distribution of attention across users, groups of people, issues in etc. in attention economy
* Economic inequality, difference in economic well-being between population groups
* ...
that remain true when the values of their variables change.
The
distance
Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
between two points on a
number line
In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a po ...
is not changed by
adding the same quantity to both numbers. On the other hand,
multiplication
Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being additi ...
does not have this same property, as distance is not invariant under multiplication.
Angle
In Euclidean geometry, an angle is the figure formed by two Ray (geometry), rays, called the ''Side (plane geometry), sides'' of the angle, sharing a common endpoint, called the ''vertex (geometry), vertex'' of the angle.
Angles formed by two ...
s and
ratio
In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
s of distances are invariant under
scalings,
rotation
Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
s,
translation
Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The ...
s and
reflection Reflection or reflexion may refer to:
Science and technology
* Reflection (physics), a common wave phenomenon
** Specular reflection, reflection from a smooth surface
*** Mirror image, a reflection in a mirror or in water
** Signal reflection, in ...
s. These transformations produce
similar shapes, which is the basis of
trigonometry
Trigonometry () is a branch of mathematics that studies relationships between side lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. T ...
. In contrast, angles and ratios are not invariant under non-uniform scaling (such as stretching). The sum of a triangle's interior angles (180°) is invariant under all the above operations. As another example, all
circle
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
s are similar: they can be transformed into each other and the ratio of the
circumference
In geometry, the circumference (from Latin ''circumferens'', meaning "carrying around") is the perimeter of a circle or ellipse. That is, the circumference would be the arc length of the circle, as if it were opened up and straightened out to ...
to the
diameter
In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid for ...
is invariant (denoted by the Greek letter π (
pi)).
Some more complicated examples:
* The
real part
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
and the
absolute value
In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), an ...
of a
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
are invariant under
complex conjugation
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if a and b are real, then) the complex conjugate of a + bi is equal to a - ...
.
* The
degree
Degree may refer to:
As a unit of measurement
* Degree (angle), a unit of angle measurement
** Degree of geographical latitude
** Degree of geographical longitude
* Degree symbol (°), a notation used in science, engineering, and mathematics
...
of a
polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exa ...
is invariant under a linear change of variables.
* The
dimension
In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
and
homology group
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topolog ...
s of a topological object are invariant under
homeomorphism
In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomor ...
.
* The number of
fixed points of a
dynamical system
In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space. Examples include the mathematical models that describe the swinging of a ...
is invariant under many mathematical operations.
* Euclidean distance is invariant under
orthogonal transformation In linear algebra, an orthogonal transformation is a linear transformation ''T'' : ''V'' → ''V'' on a real inner product space ''V'', that preserves the inner product. That is, for each pair of elements of ''V'', we h ...
s.
* Euclidean area is invariant under
linear map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a Map (mathematics), mapping V \to W between two vect ...
s which have
determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and ...
±1 (see ).
* Some invariants of
projective transformation
In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, ...
s include
collinearity
In geometry, collinearity of a set of Point (geometry), points is the property of their lying on a single Line (geometry), line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, t ...
of three or more points,
concurrency of three or more lines,
conic section
In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a specia ...
s, the
cross-ratio
In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points ''A'', ''B'', ''C'' and ''D'' on a line, th ...
.
* The
determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and ...
,
trace
Trace may refer to:
Arts and entertainment Music
* ''Trace'' (Son Volt album), 1995
* ''Trace'' (Died Pretty album), 1993
* Trace (band), a Dutch progressive rock band
* ''The Trace'' (album)
Other uses in arts and entertainment
* ''Trace'' ...
, and
eigenvectors
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted ...
and
eigenvalues
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
of a
square matrix
In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Square matrices are often ...
are invariant under
changes of basis. In other words, the
spectrum of a matrix is invariant to the change of basis.
* The principal invariants of
tensors
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensor ...
do not change with rotation of the coordinate system (see
Invariants of tensors).
* The
singular values In mathematics, in particular functional analysis, the singular values, or ''s''-numbers of a compact operator T: X \rightarrow Y acting between Hilbert spaces X and Y, are the square roots of the (necessarily non-negative) eigenvalues of the self- ...
of a
matrix
Matrix most commonly refers to:
* ''The Matrix'' (franchise), an American media franchise
** ''The Matrix'', a 1999 science-fiction action film
** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
are invariant under orthogonal transformations.
*
Lebesgue measure is invariant under translations.
* The
variance
In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbe ...
of a
probability distribution is invariant under translations of the
real line
In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
; hence the variance of a
random variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
is unchanged after the addition of a constant.
* The
fixed points of a transformation are the elements in the
domain
Domain may refer to:
Mathematics
*Domain of a function, the set of input values for which the (total) function is defined
**Domain of definition of a partial function
**Natural domain of a partial function
**Domain of holomorphy of a function
* Do ...
that are invariant under the transformation. They may, depending on the application, be called
symmetric
Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
with respect to that transformation. For example, objects with
translational symmetry
In geometry, to translate a geometric figure is to move it from one place to another without rotating it. A translation "slides" a thing by .
In physics and mathematics, continuous translational symmetry is the invariance of a system of equati ...
are invariant under certain translations.
*The integral
of the Gaussian curvature
of a 2-dimensional
Riemannian manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ...
is invariant under changes of the
Riemannian metric
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent space '' ...
''
''. This is the
Gauss–Bonnet theorem
In the mathematical field of differential geometry, the Gauss–Bonnet theorem (or Gauss–Bonnet formula) is a fundamental formula which links the curvature of a surface to its underlying topology.
In the simplest application, the case of a t ...
.
*
Differential invariant In mathematics, a differential invariant is an invariant for the action of a Lie group on a space that involves the derivatives of graphs of functions in the space. Differential invariants are fundamental in projective differential geometry, and t ...
s for
differential equations
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
MU puzzle
The
MU puzzle is a good example of a logical problem where determining an invariant is of use for an
impossibility proof. The puzzle asks one to start with the word MI and transform it into the word MU, using in each step one of the following transformation rules:
# If a string ends with an I, a U may be appended (''x''I → ''x''IU)
# The string after the M may be completely duplicated (M''x'' → M''xx'')
# Any three consecutive I's (III) may be replaced with a single U (''x''III''y'' → ''x''U''y'')
# Any two consecutive U's may be removed (''x''UU''y'' → ''xy'')
An example derivation (with superscripts indicating the applied rules) is
:MI →
2 MII →
2 MIIII →
3 MUI →
2 MUIUI →
1 MUIUIU →
2 MUIUIUUIUIU →
4 MUIUIIUIU → ...
In light of this, one might wonder whether it is possible to convert MI into MU, using only these four transformation rules. One could spend many hours applying these transformation rules to strings. However, it might be quicker to find a
property
Property is a system of rights that gives people legal control of valuable things, and also refers to the valuable things themselves. Depending on the nature of the property, an owner of property may have the right to consume, alter, share, r ...
that is invariant to all rules (i.e. that isn't changed by any of them), and demonstrates that getting to MU is impossible. By looking at the puzzle from a logical standpoint, one might realize that the only way to get rid of any I's is to have three consecutive I's in the string. This makes the following invariant interesting to consider:
:''The number of I's in the string is not a multiple of 3''.
This is an invariant to the problem, if for each of the transformation rules the following holds: if the invariant held before applying the rule, it will also hold after applying it. Looking at the net effect of applying the rules on the number of I's and U's, one can see this actually is the case for all rules:
:
The table above shows clearly that the invariant holds for each of the possible transformation rules, which means that whichever rule one picks, at whatever state, if the number of I's was not a multiple of three before applying the rule, then it won't be afterwards either.
Given that there is a single I in the starting string MI, and one that is not a multiple of three, one can then conclude that it is impossible to go from MI to MU (as the number of I's will never be a multiple of three).
Invariant set
A
subset
In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
''S'' of the domain ''U'' of a mapping ''T'': ''U'' → ''U'' is an invariant set under the mapping when
Note that the
elements of ''S'' are not
fixed
Fixed may refer to:
* ''Fixed'' (EP), EP by Nine Inch Nails
* ''Fixed'', an upcoming 2D adult animated film directed by Genndy Tartakovsky
* Fixed (typeface), a collection of monospace bitmap fonts that is distributed with the X Window System
* ...
, even though the set ''S'' is fixed in the
power set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
of ''U''. (Some authors use the terminology ''setwise invariant,''
vs. ''pointwise invariant,'' to distinguish between these cases.)
For example, a circle is an invariant subset of the plane under a
rotation
Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
about the circle's center. Further, a
conical surface is invariant as a set under a
homothety
In mathematics, a homothety (or homothecy, or homogeneous dilation) is a transformation of an affine space determined by a point ''S'' called its ''center'' and a nonzero number ''k'' called its ''ratio'', which sends point X to a point X' by th ...
of space.
An invariant set of an operation ''T'' is also said to be stable under ''T''. For example, the
normal subgroup
In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group G i ...
s that are so important in
group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
are those
subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...
s that are stable under the
inner automorphism
In abstract algebra an inner automorphism is an automorphism of a group, ring, or algebra given by the conjugation action of a fixed element, called the ''conjugating element''. They can be realized via simple operations from within the group it ...
s of the ambient
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...
.
In
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as:
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as:
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrices.
...
, if a
linear transformation
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pre ...
''T'' has an
eigenvector
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
v, then the line through 0 and v is an invariant set under ''T'', in which case the eigenvectors span an
invariant subspace In mathematics, an invariant subspace of a linear mapping ''T'' : ''V'' → ''V '' i.e. from some vector space ''V'' to itself, is a subspace ''W'' of ''V'' that is preserved by ''T''; that is, ''T''(''W'') ⊆ ''W''.
General descrip ...
which is stable under ''T''.
When ''T'' is a
screw displacement
A screw axis (helical axis or twist axis) is a line that is simultaneously the axis of rotation and the line along which translation of a body occurs. Chasles' theorem shows that each Euclidean displacement in three-dimensional space has a screw ...
, the
screw axis
A screw axis (helical axis or twist axis) is a line that is simultaneously the axis of rotation and the line along which translation of a body occurs. Chasles' theorem shows that each Euclidean displacement in three-dimensional space has a scre ...
is an invariant line, though if the
pitch is non-zero, ''T'' has no fixed points.
Formal statement
The notion of invariance is formalized in three different ways in mathematics: via
group action
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism ...
s, presentations, and deformation.
Unchanged under group action
Firstly, if one has a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...
''G''
acting
Acting is an activity in which a story is told by means of its enactment by an actor or actress who adopts a character—in theatre, television, film, radio, or any other medium that makes use of the mimetic mode.
Acting involves a broad r ...
on a mathematical object (or set of objects) ''X,'' then one may ask which points ''x'' are unchanged, "invariant" under the group action, or under an element ''g'' of the group.
Frequently one will have a group acting on a set ''X'', which leaves one to determine which objects in an ''associated'' set ''F''(''X'') are invariant. For example, rotation in the plane about a point leaves the point about which it rotates invariant, while translation in the plane does not leave any points invariant, but does leave all lines parallel to the direction of translation invariant as lines. Formally, define the set of lines in the plane ''P'' as ''L''(''P''); then a
rigid motion
Rigid or rigidity may refer to:
Mathematics and physics
*Stiffness, the property of a solid body to resist deformation, which is sometimes referred to as rigidity
*Structural rigidity, a mathematical theory of the stiffness of ensembles of rig ...
of the plane takes lines to lines – the group of rigid motions acts on the set of lines – and one may ask which lines are unchanged by an action.
More importantly, one may define a ''function'' on a set, such as "radius of a circle in the plane", and then ask if this function is invariant under a group action, such as rigid motions.
Dual to the notion of invariants are ''
coinvariant
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism ...
s,'' also known as ''orbits,'' which formalizes the notion of
congruence: objects which can be taken to each other by a group action. For example, under the group of rigid motions of the plane, the
perimeter
A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference.
Calculating the perimeter has several pract ...
of a triangle is an invariant, while the set of triangles congruent to a given triangle is a coinvariant.
These are connected as follows: invariants are constant on coinvariants (for example, congruent triangles have the same perimeter), while two objects which agree in the value of one invariant may or may not be congruent (for example, two triangles with the same perimeter need not be congruent). In
classification problems, one might seek to find a
complete set of invariants In mathematics, a complete set of invariants for a classification problem is a collection of maps
:f_i : X \to Y_i
(where X is the collection of objects being classified, up to some equivalence relation \sim, and the Y_i are some sets), such tha ...
, such that if two objects have the same values for this set of invariants, then they are congruent.
For example, triangles such that all three sides are equal are congruent under rigid motions, via
SSS congruence, and thus the lengths of all three sides form a complete set of invariants for triangles. The three angle measures of a triangle are also invariant under rigid motions, but do not form a complete set as incongruent triangles can share the same angle measures. However, if one allows scaling in addition to rigid motions, then the
AAA similarity criterion shows that this is a complete set of invariants.
Independent of presentation
Secondly, a function may be defined in terms of some presentation or decomposition of a mathematical object; for instance, the
Euler characteristic
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space ...
of a
cell complex
A CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead (open access) to meet the needs of homotopy theory. This cl ...
is defined as the alternating sum of the number of cells in each dimension. One may forget the cell complex structure and look only at the underlying
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ...
(the
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
) – as different cell complexes give the same underlying manifold, one may ask if the function is ''independent'' of choice of ''presentation,'' in which case it is an ''intrinsically'' defined invariant. This is the case for the Euler characteristic, and a general method for defining and computing invariants is to define them for a given presentation, and then show that they are independent of the choice of presentation. Note that there is no notion of a group action in this sense.
The most common examples are:
* The
presentation of a manifold in terms of coordinate charts – invariants must be unchanged under
change of coordinates
In mathematics, an ordered basis of a vector space of finite dimension (vector space), dimension allows representing uniquely any element of the vector space by a coordinate vector, which is a finite sequence, sequence of scalar (mathematics), ...
.
* Various
manifold decomposition
In topology, a branch of mathematics, a manifold ''M'' may be decomposed or split by writing ''M'' as a combination of smaller pieces. When doing so, one must specify both what those pieces are and how they are put together to form ''M''.
Manifo ...
s, as discussed for Euler characteristic.
* Invariants of a
presentation of a group
In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and ...
.
Unchanged under perturbation
Thirdly, if one is studying an object which varies in a family, as is common in
algebraic geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
and
differential geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
, one may ask if the property is unchanged under perturbation (for example, if an object is constant on families or invariant under change of metric).
Invariants in computer science
In
computer science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical discipli ...
, an invariant is a
logical assertion
In mathematical logic, a judgment (or judgement) or assertion is a statement or enunciation in a metalanguage. For example, typical judgments in first-order logic would be ''that a string is a well-formed formula'', or ''that a proposition is tru ...
that is always held to be true during a certain phase of execution of a
computer program
A computer program is a sequence or set of instructions in a programming language for a computer to execute. Computer programs are one component of software, which also includes documentation and other intangible components.
A computer program ...
. For example, a
loop invariant
In computer science, a loop invariant is a property of a program loop that is true before (and after) each iteration. It is a logical assertion, sometimes checked within the code by an assertion call. Knowing its invariant(s) is essential in und ...
is a condition that is true at the beginning and the end of every iteration of a loop.
Invariants are especially useful when reasoning about the
correctness of a computer program. The theory of
optimizing compiler
In computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power cons ...
s, the methodology of
design by contract, and
formal methods
In computer science, formal methods are mathematically rigorous techniques for the specification, development, and verification of software and hardware systems. The use of formal methods for software and hardware design is motivated by the expec ...
for determining
program correctness
In theoretical computer science, an algorithm is correct with respect to a specification if it behaves as specified. Best explored is ''functional'' correctness, which refers to the input-output behavior of the algorithm (i.e., for each input it p ...
, all rely heavily on invariants.
Programmers often use
assertions in their code to make invariants explicit. Some
object oriented
Object-oriented programming (OOP) is a programming paradigm based on the concept of "objects", which can contain data and code. The data is in the form of fields (often known as attributes or ''properties''), and the code is in the form of pro ...
programming language
A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language.
The description of a programming ...
s have a special syntax for specifying
class invariant
In computer programming, specifically object-oriented programming, a class invariant (or type invariant) is an invariant used for constraining objects of a class. Methods of the class should preserve the invariant. The class invariant constrain ...
s.
Automatic invariant detection in imperative programs
Abstract interpretation tools can compute simple invariants of given imperative computer programs. The kind of properties that can be found depend on the
abstract domains used. Typical example properties are single integer variable ranges like
0<=x<1024
, relations between several variables like
0<=i-j<2*n-1
, and modulus information like
y%40
. Academic research prototypes also consider simple properties of pointer structures.
More sophisticated invariants generally have to be provided manually.
In particular, when verifying an imperative program using
the Hoare calculus,
a loop invariant has to be provided manually for each loop in the program, which is one of the reasons that this approach is generally impractical for most programs.
In the context of the above
MU puzzle example, there is currently no general automated tool that can detect that a derivation from MI to MU is impossible using only the rules 1–4. However, once the abstraction from the string to the number of its "I"s has been made by hand, leading, for example, to the following C program, an abstract interpretation tool will be able to detect that
ICount%3
can't be 0, and hence the "while"-loop will never terminate.
void MUPuzzle(void)
See also
*
Erlangen program
In mathematics, the Erlangen program is a method of characterizing geometries based on group theory and projective geometry. It was published by Felix Klein in 1872 as ''Vergleichende Betrachtungen über neuere geometrische Forschungen.'' It is nam ...
*
Invariant (physics) In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is close ...
*
Invariant estimator
In statistics, the concept of being an invariant estimator is a criterion that can be used to compare the properties of different estimators for the same quantity. It is a way of formalising the idea that an estimator should have certain intuitive ...
in statistics
*
Invariant theory
Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit descri ...
*
Invariants of tensors
*
Symmetry in mathematics
Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations.
Given a structured objec ...
*
Graph invariant
Graph may refer to:
Mathematics
*Graph (discrete mathematics), a structure made of vertices and edges
**Graph theory, the study of such graphs and their properties
* Graph (topology), a topological space resembling a graph in the sense of discr ...
*
Knot invariant
In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some ...
*
Topological invariant
In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological space ...
*
Invariant differential operator In mathematics and theoretical physics, an invariant differential operator is a kind of mathematical map from some objects to an object of similar type. These objects are typically functions on \mathbb^n, functions on a manifold, vector valued fun ...
*
Invariant measure In mathematics, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping, ...
*
Mathematical constant
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Cons ...
*
Mathematical constants and functions
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. For e ...
Notes
References
*
*
*
*
* J.D. Fokker,
H. Zantema, S.D. Swierstra (1991). "Iteratie en invariatie", Programmeren en Correctheid. Academic Service. .
*
*
External links
"Applet: Visual Invariants in Sorting Algorithms"by William Braynen in 1997
{{DEFAULTSORT:Invariant (Mathematics)
Mathematical terminology