Miracle Flatness Theorem
In algebra, the local criterion for flatness gives conditions one can check to show flatness of a module. Statement Given a commutative ring ''A'', an ideal ''I'' and an ''A''-module ''M'', suppose either *''A'' is a Noetherian ring and ''M'' is idealwise separated for ''I'': for every ideal \mathfrak, \bigcap_ I^n(\mathfrak \otimes M) = 0 (for example, this is the case when ''A'' is a Noetherian local ring, ''I'' its maximal ideal and ''M'' finitely generated), or *''I'' is nilpotent. Then the following are equivalent: The assumption that “''A'' is a Noetherian ring” is used to invoke the Artin–Rees lemma and can be weakened; see Proof Following SGA 1, Exposé IV, we first prove a few lemmas, which are interesting themselves. (See also thiblog postby Akhil Mathew for a proof of a special case.) ''Proof'': The equivalence of the first two can be seen by studying the Tor spectral sequence. Here is a direct proof: if 1. is valid and N \hookrightarrow N' is an injection ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Flat Module
In algebra, a flat module over a ring ''R'' is an ''R''-module ''M'' such that taking the tensor product over ''R'' with ''M'' preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact. Flatness was introduced by in his paper '' Géometrie Algébrique et Géométrie Analytique''. See also flat morphism. Definition A module over a ring is ''flat'' if the following condition is satisfied: for every injective linear map \varphi: K \to L of -modules, the map :\varphi \otimes_R M: K \otimes_R M \to L \otimes_R M is also injective, where \varphi \otimes_R M is the map induced by k \otimes m \mapsto \varphi(k) \otimes m. For this definition, it is enough to restrict the injections \varphi to the inclusions of finitely generated ideals into . Equivalently, an -module is flat if the tensor product with is an exact functor; that is if, for every short exact sequence of - ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an such that: I_=I_=\cdots. Equivalently, a ring is left-Noetherian (resp. right-Noetherian) if every left ideal (resp. right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on Noetherian property (for example, the Lasker ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Idealwise Separated
In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions ''R'' on a space ''X'' concentrates on a formal neighborhood of a point of ''X'': heuristically, this is a neighborhood so small that ''all'' Taylor series centered at the point are convergent. An algebraic completion is constructed in a manner analogous to completion of a metric space with Cauchy sequences, and agrees with it in the case when ''R'' has a metric given by a non-Archimedean absolute value. General construction Suppose that ''E'' is an abelian group with a descending filtration : E = F^0 E \supset F^1 E \supset F^2 E \supset \cdots \, of s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Local Ring
In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules. In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal. The concept of local rings was introduced by Wolfgang Krull in 1938 under the name ''Stellenringe''. The English term ''local ring'' is due to Zariski. Definition and first consequences A ring ''R'' is a local ring if it has any one of the following equivalent properties: * ''R'' has a unique maximal left ideal. * ''R'' has a unique maximal right ideal. * 1 ≠ 0 and the sum of any two non-units in ''R'' is a non-unit. * 1 ≠ 0 and if ''x'' is any element of ''R ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maximal Ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals contained between ''I'' and ''R''. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields. In noncommutative ring theory, a maximal right ideal is defined analogously as being a maximal element in the poset of proper right ideals, and similarly, a maximal left ideal is defined to be a maximal element of the poset of proper left ideals. Since a one sided maximal ideal ''A'' is not necessarily two-sided, the quotient ''R''/''A'' is not necessarily a ring, but it is a simple module over ''R''. If ''R'' has a unique maximal right ideal, then ''R'' is known as a local ring, and the maximal right ideal is also the unique maximal le ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nilpotent
In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term was introduced by Benjamin Peirce in the context of his work on the classification of algebras. Examples *This definition can be applied in particular to square matrices. The matrix :: A = \begin 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end :is nilpotent because A^3=0. See nilpotent matrix for more. * In the factor ring \Z/9\Z, the equivalence class of 3 is nilpotent because 32 is congruent to 0 modulo 9. * Assume that two elements a and b in a ring R satisfy ab=0. Then the element c=ba is nilpotent as \beginc^2&=(ba)^2\\ &=b(ab)a\\ &=0.\\ \end An example with matrices (for ''a'', ''b''):A = \begin 0 & 1\\ 0 & 1 \end, \;\; B =\begin 0 & 1\\ 0 & 0 \end. Here AB=0 and BA=B. *By definition, any element of a nilsemigroup is nilpotent. Properties No nilpotent element c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Artin–Rees Lemma
In mathematics, the Artin–Rees lemma is a basic result about modules over a Noetherian ring, along with results such as the Hilbert basis theorem. It was proved in the 1950s in independent works by the mathematicians Emil Artin and David Rees; a special case was known to Oscar Zariski prior to their work. One consequence of the lemma is the Krull intersection theorem. The result is also used to prove the exactness property of completion. The lemma also plays a key role in the study of ℓ-adic sheaves. Statement Let ''I'' be an ideal in a Noetherian ring ''R''; let ''M'' be a finitely generated ''R''-module and let ''N'' a submodule of ''M''. Then there exists an integer ''k'' ≥ 1 so that, for ''n'' ≥ ''k'', :I^ M \cap N = I^ (I^ M \cap N). Proof The lemma immediately follows from the fact that ''R'' is Noetherian once necessary notions and notations are set up. For any ring ''R'' and an ideal ''I'' in ''R'', we set B_I R = \bigoplus_^\infty ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tor Spectral Sequence
Tor, TOR or ToR may refer to: Places * Tor, Pallars, a village in Spain * Tor, former name of Sloviansk, Ukraine, a city * Mount Tor, Tasmania, Australia, an extinct volcano * Tor Bay, Devon, England * Tor River, Western New Guinea, Indonesia Science and technology * ''Tor'' (fish), a genus of fish commonly known as mahseers * Target of rapamycin, a regulatory enzyme * Tor functor, in mathematics * Tor (network), an Internet communication method for enabling online anonymity ** The Tor Project, a software organization that maintains the Tor network and the related Tor Browser People * Tor (given name), a Nordic masculine given name * Tor (surname) * Tor Johnson, stage name of Swedish professional wrestler and actor Karl Erik Tore Johansson (1902 or 1903–1971) * Tor (musician), Canadian electronic musician Tor Sjogren Arts, entertainment, and media Fictional characters * Tor (comics), a prehistoric human character * Tor, a character in the book ''The Hero and the Crown ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
étale Morphism
In algebraic geometry, an étale morphism () is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology. The word ''étale'' is a French adjective, which means "slack", as in "slack tide", or, figuratively, calm, immobile, something left to settle. Definition Let \phi : R \to S be a ring homomorphism. This makes S an R-algebra. Choose a monic polynomial f in R /math> and a polynomial g in R /math> such that the derivative f' of f is a unit in (R fR _g. We say that \phi is ''standard étale'' if f and g can be chos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Flat Morphism
In mathematics, in particular in the theory of schemes in algebraic geometry, a flat morphism ''f'' from a scheme ''X'' to a scheme ''Y'' is a morphism such that the induced map on every stalk is a flat map of rings, i.e., :f_P\colon \mathcal_ \to \mathcal_ is a flat map for all ''P'' in ''X''. A map of rings A\to B is called flat if it is a homomorphism that makes ''B'' a flat ''A''-module. A morphism of schemes is called faithfully flat if it is both surjective and flat. Two basic intuitions regarding flat morphisms are: *flatness is a generic property; and *the failure of flatness occurs on the jumping set of the morphism. The first of these comes from commutative algebra: subject to some finiteness conditions on ''f'', it can be shown that there is a non-empty open subscheme Y' of ''Y'', such that ''f'' restricted to ''Y''′ is a flat morphism (generic flatness). Here 'restriction' is interpreted by means of the fiber product of schemes, applied to ''f'' and the inclusio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unramified Morphism
In algebraic geometry, an unramified morphism is a morphism f: X \to Y of schemes such that (a) it is locally of finite presentation and (b) for each x \in X and y = f(x), we have that # The residue field k(x) is a separable algebraic extension of k(y). # f^(\mathfrak_y) \mathcal_ = \mathfrak_x, where f^: \mathcal_ \to \mathcal_ and \mathfrak_y, \mathfrak_x are maximal ideals of the local rings. A flat unramified morphism is called an étale morphism. Less strongly, if f satisfies the conditions when restricted to sufficiently small neighborhoods of x and y, then f is said to be unramified near x. Some authors prefer to use weaker conditions, in which case they call a morphism satisfying the above a G-unramified morphism. Simple example Let A be a ring and ''B'' the ring obtained by adjoining an integral element to ''A''; i.e., B = A (F) for some monic polynomial ''F''. Then \operatorname(B) \to \operatorname(A) is unramified if and only if the polynomial ''F'' is separable (i.e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brian Conrad
Brian Conrad (born November 20, 1970) is an American mathematician and number theorist, working at Stanford University. Previously, he taught at the University of Michigan and at Columbia University. Conrad and others proved the modularity theorem, also known as the Taniyama-Shimura Conjecture. He proved this in 1999 with Christophe Breuil, Fred Diamond and Richard Taylor, while holding a joint postdoctoral position at Harvard University and the Institute for Advanced Study in Princeton, New Jersey. Conrad received his bachelor's degree from Harvard in 1992, where he won a prize for his undergraduate thesis. He did his doctoral work under Andrew Wiles and went on to receive his Ph.D. from Princeton University in 1996 with a dissertation titled ''Finite Honda Systems And Supersingular Elliptic Curves''. He was also featured as an extra in Nova's ''The Proof''. His identical twin brother Keith Conrad, also a number theorist, is a professor at the University of Connecticut. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |