Michael Selection Theorem
   HOME
*





Michael Selection Theorem
In functional analysis, a branch of mathematics, Michael selection theorem is a selection theorem named after Ernest Michael. In its most popular form, it states the following: : Let ''X'' be a paracompact space and ''Y'' a Banach space. :Let F\colon X\to Y be a lower hemicontinuous set-valued function with nonempty convex closed values. :Then there exists a continuous selection f\colon X \to Y of ''F.'' : Conversely, if any lower semicontinuous multimap from topological space ''X'' to a Banach space, with nonempty convex closed values, admits a continuous selection, then ''X'' is paracompact. This provides another characterization for paracompactness. Examples A function that satisfies all requirements The function: F(x)= -x/2, ~1-x/4, shown by the grey area in the figure at the right, is a set-valued function from the real interval ,1to itself. It satisfies all Michael's conditions, and indeed it has a continuous selection, for example: f(x)= 1-x/2 or f(x)= 1- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definition, topology, etc.) and the linear transformation, linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of variati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kakutani
Kakutani is a Japanese surname. Notable people with the surname include: * Michiko Kakutani (born 1955), Japanese-American Pulitzer Prize-winning critic * Shizuo Kakutani (1911–2004), Japanese-American mathematician **Kakutani fixed-point theorem In mathematical analysis, the Kakutani fixed-point theorem is a fixed-point theorem for set-valued functions. It provides sufficient conditions for a set-valued function defined on a convex set, convex, compact set, compact subset of a Euclidean sp ... {{surname Japanese-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Properties Of Topological Spaces
Property is the ownership of land, resources, improvements or other tangible objects, or intellectual property. Property may also refer to: Mathematics * Property (mathematics) Philosophy and science * Property (philosophy), in philosophy and logic, an abstraction characterizing an object *Material properties, properties by which the benefits of one material versus another can be assessed *Chemical property, a material's properties that becomes evident during a chemical reaction * Physical property, any property that is measurable whose value describes a state of a physical system *Semantic property *Thermodynamic properties, in thermodynamics and materials science, intensive and extensive physical properties of substances *Mental property, a property of the mind studied by many sciences and parasciences Computer science * Property (programming), a type of class member in object-oriented programming * .properties, a Java Properties File to store program settings as name-value ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Theory Of Continuous Functions
A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be scientific, belong to a non-scientific discipline, or no discipline at all. Depending on the context, a theory's assertions might, for example, include generalized explanations of how nature works. The word has its roots in ancient Greek, but in modern use it has taken on several related meanings. In modern science, the term "theory" refers to scientific theories, a well-confirmed type of explanation of nature, made in a way consistent with the scientific method, and fulfilling the criteria required by modern science. Such theories are described in such a way that scientific tests should be able to provide empirical support for it, or empirical contradiction ("falsify") of it. Scientific theories are the most reliable, rigorous, and compre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Selection Theorem
In functional analysis, a branch of mathematics, a selection theorem is a theorem that guarantees the existence of a single-valued selection function from a given set-valued map. There are various selection theorems, and they are important in the theories of differential inclusions, optimal control, and mathematical economics. Preliminaries Given two sets ''X'' and ''Y'', let ''F'' be a set-valued function from ''X'' and ''Y''. Equivalently, F:X\rightarrow\mathcal(Y) is a function from ''X'' to the power set of ''Y''. A function f: X \rightarrow Y is said to be a selection of ''F'' if : \forall x \in X: \,\,\, f(x) \in F(x) \,. In other words, given an input ''x'' for which the original function ''F'' returns multiple values, the new function ''f'' returns a single value. This is a special case of a choice function. The axiom of choice implies that a selection function always exists; however, it is often important that the selection have some "nice" properties, such as conti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zero-dimensional Michael Selection Theorem
In mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. A graphical illustration of a nildimensional space is a point. Definition Specifically: * A topological space is zero-dimensional with respect to the Lebesgue covering dimension if every open cover of the space has a refinement which is a cover by disjoint open sets. * A topological space is zero-dimensional with respect to the finite-to-finite covering dimension if every finite open cover of the space has a refinement that is a finite open cover such that any point in the space is contained in exactly one open set of this refinement. * A topological space is zero-dimensional with respect to the small inductive dimension if it has a base consisting of clopen sets. The three notions above agree for separable, metrisable spaces. Properties of spaces w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Topological Vector Space
In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations (vector addition and scalar multiplication) are also Continuous function, continuous functions. Such a topology is called a and every topological vector space has a Uniform space, uniform topological structure, allowing a notion of uniform convergence and Complete topological vector space, completeness. Some authors also require that the space is a Hausdorff space (although this article does not). One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs. Many topological vec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normed Vector Space
In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" in the real (physical) world. A norm is a real-valued function defined on the vector space that is commonly denoted x\mapsto \, x\, , and has the following properties: #It is nonnegative, meaning that \, x\, \geq 0 for every vector x. #It is positive on nonzero vectors, that is, \, x\, = 0 \text x = 0. # For every vector x, and every scalar \alpha, \, \alpha x\, = , \alpha, \, \, x\, . # The triangle inequality holds; that is, for every vectors x and y, \, x+y\, \leq \, x\, + \, y\, . A norm induces a distance, called its , by the formula d(x,y) = \, y-x\, . which makes any normed vector space into a metric space and a topological vector space. If this metric space is complete then the normed space is a Banach space. Every normed vec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peano Existence Theorem
In mathematics, specifically in the study of ordinary differential equations, the Peano existence theorem, Peano theorem or Cauchy–Peano theorem, named after Giuseppe Peano and Augustin-Louis Cauchy, is a fundamental theorem which guarantees the existence of solutions to certain initial value problems. History Peano first published the theorem in 1886 with an incorrect proof. In 1890 he published a new correct proof using successive approximations. Theorem Let D be an open subset of \mathbb\times\mathbb with f\colon D \to \mathbb a continuous function and y'(x) = f\left(x,y(x)\right) a continuous, explicit first-order differential equation defined on ''D'', then every initial value problem y\left(x_0\right) = y_0 for ''f'' with (x_0, y_0) \in D has a local solution z\colon I \to \mathbb where I is a neighbourhood of x_0 in \mathbb, such that z'(x) = f\left(x,z(x)\right) for all x \in I . The solution need not be unique: one and the same initial value (x_0,y_0) may give ris ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lower Semi-continuous
In mathematical analysis, semicontinuity (or semi-continuity) is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function f is upper (respectively, lower) semicontinuous at a point x_0 if, roughly speaking, the function values for arguments near x_0 are not much higher (respectively, lower) than f\left(x_0\right). A function is continuous if and only if it is both upper and lower semicontinuous. If we take a continuous function and increase its value at a certain point x_0 to f\left(x_0\right) + c for some c>0, then the result is upper semicontinuous; if we decrease its value to f\left(x_0\right) - c then the result is lower semicontinuous. The notion of upper and lower semicontinuous function was first introduced and studied by René Baire in his thesis in 1899. Definitions Assume throughout that X is a topological space and f:X\to\overline is a function with values in the extended real numbers \overline=\R \cup \ = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Inclusion
In mathematics, differential inclusions are a generalization of the concept of ordinary differential equation of the form :\frac(t)\in F(t,x(t)), where ''F'' is a multivalued map, i.e. ''F''(''t'', ''x'') is a ''set'' rather than a single point in \R^d. Differential inclusions arise in many situations including differential variational inequalities, projected dynamical systems, Moreau's sweeping process, linear and nonlinear complementarity dynamical systems, discontinuous ordinary differential equations, switching dynamical systems, and fuzzy set arithmetic. For example, the basic rule for Coulomb friction is that the friction force has magnitude ''μN'' in the direction opposite to the direction of slip, where ''N'' is the normal force and ''μ'' is a constant (the friction coefficient). However, if the slip is zero, the friction force can be ''any'' force in the correct plane with magnitude smaller than or equal to ''μN''. Thus, writing the friction force as a function o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]