HOME





Memory Coherence
Memory coherence is an issue that affects the design of computer systems in which two or more Central processing unit, processors or Multi core, cores share a common area of memory (computers), memory. In a uniprocessor system (where there exists only one core), there is only one processing element doing all the work and therefore only one processing element that can read or write from/to a given memory location. As a result, when a value is changed, all subsequent read operations of the corresponding memory location will see the updated value, even if it is cache (computing), cached. Conversely, in multiprocessor (or Multi core, multicore) systems, there are two or more processing elements working at the same time, and so it is possible that they simultaneously access the same memory location. Provided none of them changes the data in this location, they can share it indefinitely and cache it as they please. But as soon as one updates the location, the others might work on an out-o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer System
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (''computation''). Modern digital electronic computers can perform generic sets of operations known as ''programs'', which enable computers to perform a wide range of tasks. The term computer system may refer to a nominally complete computer that includes the hardware, operating system, software, and peripheral equipment needed and used for full operation; or to a group of computers that are linked and function together, such as a computer network or computer cluster. A broad range of industrial and consumer products use computers as control systems, including simple special-purpose devices like microwave ovens and remote controls, and factory devices like industrial robots. Computers are at the core of general-purpose devices such as personal computers and mobile devices such as smartphones. Computers power the Internet, which links billions of compute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bus Sniffing
Bus snooping or bus sniffing is a scheme by which a coherency controller (snooper) in a cache (a snoopy cache) monitors or snoops the bus transactions, and its goal is to maintain a cache coherency in distributed shared memory systems. This scheme was introduced by Ravishankar and Goodman in 1983, under the name "write-once" cache coherency. A cache containing a coherency controller (snooper) is called a snoopy cache. How it works When specific data are shared by several caches and a processor modifies the value of the shared data, the change must be propagated to all the other caches which have a copy of the data. This change propagation prevents the system from violating cache coherency. The notification of data change can be done by bus snooping. All the snoopers monitor every transaction on a bus. If a transaction modifying a shared cache block appears on a bus, all the snoopers check whether their caches have the same copy of the shared block. If a cache has a copy of the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Race Condition
A race condition or race hazard is the condition of an electronics, software, or other system where the system's substantive behavior is dependent on the sequence or timing of other uncontrollable events, leading to unexpected or inconsistent results. It becomes a bug when one or more of the possible behaviors is undesirable. The term ''race condition'' was already in use by 1954, for example in David A. Huffman's doctoral thesis "The synthesis of sequential switching circuits". Race conditions can occur especially in logic circuits or multithreaded or distributed software programs. Using mutual exclusion can prevent race conditions in distributed software systems. In electronics A typical example of a race condition may occur when a logic gate combines signals that have traveled along different paths from the same source. The inputs to the gate can change at slightly different times in response to a change in the source signal. The output may, for a brief period, chan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distributed Shared Memory
In computer science, distributed shared memory (DSM) is a form of memory architecture where physically separated memories can be addressed as a single shared address space. The term "shared" does not mean that there is a single centralized memory, but that the address space is shared—i.e., the same physical address on two Processor (computing), processors refers to the same location in memory. Distributed global address space (DGAS), is a similar term for a wide class of software and hardware implementations, in which each node (networking), node of a computer cluster, cluster has access to shared memory architecture, shared memory in addition to each node's private (i.e., not shared) Random-access memory, memory. Overview DSM can be achieved via software as well as hardware. Hardware examples include cache coherence circuits and network interface controllers. There are three ways of implementing DSM: * Page (computer memory), Page-based approach using virtual memory * Sha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cache Coherence
In computer architecture, cache coherence is the uniformity of shared resource data that is stored in multiple local caches. In a cache coherent system, if multiple clients have a cached copy of the same region of a shared memory resource, all copies are the same. Without cache coherence, a change made to the region by one client may not be seen by others, and errors can result when the data used by different clients is mismatched. A cache coherence protocol is used to maintain cache coherency. The two main types are snooping and directory-based protocols. Cache coherence is of particular relevance in multiprocessing systems, where each CPU may have its own local cache of a shared memory resource. Overview In a shared memory multiprocessor system with a separate cache memory for each processor, it is possible to have many copies of shared data: one copy in the main memory and one in the local cache of each processor that requested it. When one of the copies of data is c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


MOESI Protocol
Modified Owned Exclusive Shared Invalid (MOESI) is a full cache coherency protocol that encompasses all of the possible states commonly used in other protocols. In addition to the four common MESI protocol states, there is a fifth "Owned" state representing data that is both modified and shared. This avoids the need to write modified data back to main memory before sharing it. While the data must still be written back eventually, the write-back may be deferred . In order for this to be possible, direct cache-to-cache transfers of data must be possible, so a cache with the data in the modified state can supply that data to another reader without transferring it to memory. As discussed in AMD64 Architecture Programmer's Manual Vol. 2 ''System Programming'', each cache line is in one of five states: ;Modified: This cache has the only valid copy of the cache line, and has made changes to that copy. The cached copy may be further modified freely. ;Owned: This line is one of seve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MOSI Protocol
The MOSI protocol is an extension of the basic MSI cache coherency protocol. It adds the Owned state, which indicates that the current processor owns this block, and will service requests from other processors for the block. Overview of States Following are the permitted states of a given cache line: Modified (M) - Only one cache has a valid copy of the block and the value is likely to be different from the one in main memory. It has almost the same meaning as a dirty state in a write-back cache except for the difference that modified state also implies exclusive ownership of that block. Dirty state just means that the value of the block is different from the one in main memory, whereas, modified implies that the value is different than that of the main memory and that it is cached in only one location. Owned (O) - Multiple caches may hold the most recent and correct value of a block and the value in main memory may or may not be correct. At a time, only one cache can have the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MESI Protocol
The MESI protocol is an invalidate-based cache coherence protocol, and is one of the most common protocols that support write-back caches. It is also known as the Illinois protocol due to its development at the University of Illinois at Urbana-Champaign. Write back caches can save considerable bandwidth generally wasted on a write through cache. There is always a dirty state present in write-back caches that indicates that the data in the cache is different from that in the main memory. The Illinois Protocol requires a cache-to-cache transfer on a miss if the block resides in another cache. This protocol reduces the number of main memory transactions with respect to the MSI protocol. This marks a significant improvement in performance. States The letters in the acronym MESI represent four exclusive states that a cache line can be marked with (encoded using two additional bits): ;Modified (M): The cache line is present only in the current cache, and is ''dirty'' - it has been m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MSI Protocol
In computing, the MSI protocol - a basic Cache coherence, cache-coherence protocol - operates in multiprocessor systems. As with other cache coherency protocols, the letters of the protocol name identify the possible states in which a cache line can be. Overview In MSI, each block contained inside a cache can have one of three possible states: *Modified: The block has been modified in the CPU cache, cache. The data in the cache is then inconsistent with the backing store (e.g. Main memory, memory). A cache with a block in the "M" state has the responsibility to write the block to the backing store when it is evicted. *Shared: This block is unmodified and exists in read-only state in at least one cache. The cache can evict the data without writing it to the backing store. *Invalid: This block is either not present in the current cache or has been invalidated by a bus request, and must be fetched from memory or another CPU cache, cache if the block is to be stored in this cac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Directory-based Coherence Protocols
In computer engineering, directory-based cache coherence is a type of cache coherence mechanism, where directories are used to manage caches in place of bus snooping. Bus snooping methods scale poorly due to the use of broadcasting. These methods can be used to target both performance and scalability of directory systems. Full bit vector format In the full bit vector format, for each possible cache line in memory, a bit is used to track whether every individual processor has that line stored in its cache. The full bit vector format is the simplest structure to implement, but the least scalable. The SGI Origin 2000 uses a combination of full bit vector and coarse bit vector depending on the number of processors. Each directory entry must have 1 bit stored per processor per cache line, along with bits for tracking the state of the directory. This leads to the total size required being ''(number of processors)×number of cache lines'', having a storage overhead ratio of ''(numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Central Processing Unit
A central processing unit (CPU), also called a central processor, main processor, or just processor, is the primary Processor (computing), processor in a given computer. Its electronic circuitry executes Instruction (computing), instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs). The form, CPU design, design, and implementation of CPUs have changed over time, but their fundamental operation remains almost unchanged. Principal components of a CPU include the arithmetic–logic unit (ALU) that performs arithmetic operation, arithmetic and Bitwise operation, logic operations, processor registers that supply operands to the ALU and store the results of ALU operations, and a control unit that orchestrates the #Fetch, fetching (from memory), #Decode, decoding and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Consistency Model
In computer science, a consistency model specifies a contract between the programmer and a system, wherein the system guarantees that if the programmer follows the rules for operations on memory, memory will be data consistency, consistent and the results of reading, writing, or updating memory will be predictable. Consistency models are used in Distributed computing, distributed systems like distributed shared memory systems or distributed data stores (such as filesystems, databases, optimistic replication systems or web caching). Consistency is different from coherence, which occurs in systems that are cache coherence, cached or cache-less, and is consistency of data with respect to all processors. Coherence deals with maintaining a global order in which writes to a single location or single variable are seen by all processors. Consistency deals with the ordering of operations to multiple locations with respect to all processors. High level languages, such as C++ and Java (progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]