HOME
*



picture info

McMullen Problem
The McMullen problem is an open problem in discrete geometry named after Peter McMullen. Statement In 1972, David G. Larman wrote about the following problem: Larman credited the problem to a private communication by Peter McMullen. Equivalent formulations Gale transform Using the Gale transform, this problem can be reformulated as: The numbers \nu of the original formulation of the McMullen problem and \mu of the Gale transform formulation are connected by the relationships \begin \mu(k)&=\min\ \\ \nu(d)&=\max\ \end Partition into nearly-disjoint hulls Also, by simple geometric observation, it can be reformulated as: The relation between \mu and \lambda is \mu(d+1)=\lambda(d),\qquad d\geq1 \, Projective duality The equivalent projective dual statement to the McMullen problem is to determine the largest number \nu(d) such that every set of \nu(d) hyperplanes in general position in ''d''-dimensional real projective space form an arrangement of hyperplanes in which on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discrete Geometry
Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object. Discrete geometry has a large overlap with convex geometry and computational geometry, and is closely related to subjects such as finite geometry, combinatorial optimization, digital geometry, discrete differential geometry, geometric graph theory, toric geometry, and combinatorial topology. History Although polyhedra and tessellations had been studied for many years by people such as Kepler and Cauchy, modern discrete geometry has its origins in the late 19th century. Early topics studie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Dual
In geometry, a striking feature of projective planes is the symmetry of the roles played by points and lines in the definitions and theorems, and (plane) duality is the formalization of this concept. There are two approaches to the subject of duality, one through language () and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a ''duality''. Such a map can be constructed in many ways. The concept of plane duality readily extends to space duality and beyond that to duality in any finite-dimensional projective geometry. Principle of duality A projective plane may be defined axiomatically as an incidence structure, in terms of a set of ''points'', a set of ''lines'', and an incidence relation that determines which points lie on which lines. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




The Bulletin Of The London Mathematical Society
The London Mathematical Society (LMS) is one of the United Kingdom's learned societies for mathematics (the others being the Royal Statistical Society (RSS), the Institute of Mathematics and its Applications (IMA), the Edinburgh Mathematical Society and the Operational Research Society (ORS). History The Society was established on 16 January 1865, the first president being Augustus De Morgan. The earliest meetings were held in University College, but the Society soon moved into Burlington House, Piccadilly. The initial activities of the Society included talks and publication of a journal. The LMS was used as a model for the establishment of the American Mathematical Society in 1888. Mary Cartwright was the first woman to be President of the LMS (in 1961–62). The Society was granted a royal charter in 1965, a century after its foundation. In 1998 the Society moved from rooms in Burlington House into De Morgan House (named after the society's first president), at 57–5 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


European Journal Of Combinatorics
European, or Europeans, or Europeneans, may refer to: In general * ''European'', an adjective referring to something of, from, or related to Europe ** Ethnic groups in Europe ** Demographics of Europe ** European cuisine, the cuisines of Europe and other Western countries * ''European'', an adjective referring to something of, from, or related to the European Union ** Citizenship of the European Union ** Demographics of the European Union In publishing * ''The European'' (1953 magazine), a far-right cultural and political magazine published 1953–1959 * ''The European'' (newspaper), a British weekly newspaper published 1990–1998 * ''The European'' (2009 magazine), a German magazine first published in September 2009 *''The European Magazine'', a magazine published in London 1782–1826 *''The New European'', a British weekly pop-up newspaper first published in July 2016 Other uses * * Europeans (band), a British post-punk group, from Bristol See also * * * Europe (disam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michel Las Vergnas
Michel Las Vergnas (11 January 1941 – 19 January 2013) was a French mathematician associated with Pierre-and-Marie-Curie University in Paris, and a research director emeritus at the Centre national de la recherche scientifique.Michel Las Vergnas passed away
, Equipe Combinatoire & Optimisation, Pierre-and-Marie-Curie University, retrieved 2013-11-03.
Las Vergnas earned his Ph.D. in 1972 from Pierre-and-Marie-Curie University, under the supervision of . He was one of the founders of the ''
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arrangement Of Hyperplanes
In geometry and combinatorics, an arrangement of hyperplanes is an arrangement of a finite set ''A'' of hyperplanes in a linear, affine, or projective space ''S''. Questions about a hyperplane arrangement ''A'' generally concern geometrical, topological, or other properties of the complement, ''M''(''A''), which is the set that remains when the hyperplanes are removed from the whole space. One may ask how these properties are related to the arrangement and its intersection semilattice. The intersection semilattice of ''A'', written ''L''(''A''), is the set of all subspaces that are obtained by intersecting some of the hyperplanes; among these subspaces are ''S'' itself, all the individual hyperplanes, all intersections of pairs of hyperplanes, etc. (excluding, in the affine case, the empty set). These intersection subspaces of ''A'' are also called the flats of ''A''. The intersection semilattice ''L''(''A'') is partially ordered by ''reverse inclusion''. If the whole sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real Projective Space
In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space. Basic properties Construction As with all projective spaces, RP''n'' is formed by taking the quotient of under the equivalence relation for all real numbers . For all ''x'' in one can always find a ''λ'' such that ''λx'' has norm 1. There are precisely two such ''λ'' differing by sign. Thus RP''n'' can also be formed by identifying antipodal points of the unit ''n''-sphere, ''S''''n'', in R''n''+1. One can further restrict to the upper hemisphere of ''S''''n'' and merely identify antipodal points on the bounding equator. This shows that RP''n'' is also equivalent to the closed ''n''-dimensional disk, ''D''''n'', with antipodal points on the boundary, , identified. Low-dimensional examples * RP1 is called the real projective line, which is topologically equ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its ''ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines. This notion can be used in any general space in which the concept of the dimension of a subspace is defined. In different settings, hyperplanes may have different properties. For instance, a hyperplane of an -dimensional affine space is a flat subset with dimension and it separates the space into two half spaces. While a hyperplane of an -dimensional projective space does not have this property. The difference in dimension between a subspace and its ambient space is known as the codimension of with respect to . Therefore, a necessary and sufficient condition for to be a hyperplane in is for to have codimension one in . Technical description In geometry, a hyperplane of an ''n''-dimensi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentagon Dual Arrangement
In geometry, a pentagon (from the Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting. A self-intersecting ''regular pentagon'' (or ''star pentagon'') is called a pentagram. Regular pentagons A '' regular pentagon'' has Schläfli symbol and interior angles of 108°. A '' regular pentagon'' has five lines of reflectional symmetry, and rotational symmetry of order 5 (through 72°, 144°, 216° and 288°). The diagonals of a convex regular pentagon are in the golden ratio to its sides. Given its side length t, its height H (distance from one side to the opposite vertex), width W (distance between two farthest separated points, which equals the diagonal length D) and circumradius R are given by: :\begin H &= \frac~t \approx 1.539~t, \\ W= D &= \frac~t\approx 1.618~t, \\ W &= \sqrt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Peter McMullen
Peter McMullen (born 11 May 1942) is a British mathematician, a professor emeritus of mathematics at University College London. Education and career McMullen earned bachelor's and master's degrees from Trinity College, Cambridge, and studied at the University of Birmingham, where he received his doctorate in 1968. and taught at Western Washington University from 1968 to 1969. In 1978 he earned his Doctor of Science at University College London where he still works as a professor emeritus. In 2006 he was accepted as a corresponding member of the Austrian Academy of Sciences. Contributions McMullen is known for his work in polyhedral combinatorics and discrete geometry, and in particular for proving what was then called the upper bound conjecture and now is the upper bound theorem. This result states that cyclic polytopes have the maximum possible number of faces among all polytopes with a given dimension and number of vertices. McMullen also formulated the g-conjecture, later t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partition Of A Set
In mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset. Every equivalence relation on a set defines a partition of this set, and every partition defines an equivalence relation. A set equipped with an equivalence relation or a partition is sometimes called a setoid, typically in type theory and proof theory. Definition and Notation A partition of a set ''X'' is a set of non-empty subsets of ''X'' such that every element ''x'' in ''X'' is in exactly one of these subsets (i.e., ''X'' is a disjoint union of the subsets). Equivalently, a family of sets ''P'' is a partition of ''X'' if and only if all of the following conditions hold: *The family ''P'' does not contain the empty set (that is \emptyset \notin P). *The union of the sets in ''P'' is equal to ''X'' (that is \textstyle\bigcup_ A = X). The sets in ''P'' are said to exhaust or cover ''X''. See also collectively exhaus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gale Transform
In the mathematical discipline of polyhedral combinatorics, the Gale transform turns the vertices of any convex polytope into a set of vectors or points in a space of a different dimension, the Gale diagram of the polytope. It can be used to describe high-dimensional polytopes with few vertices, by transforming them into sets of points in a space of a much lower dimension. The process can also be reversed, to construct polytopes with desired properties from their Gale diagrams. The Gale transform and Gale diagram are named after David Gale, who introduced these methods in a 1956 paper on neighborly polytopes. Definitions Transform Given a d-dimensional polytope, with n vertices, adjoin 1 to the Cartesian coordinates of each vertex, to obtain a (d+1)-dimensional column vector. The matrix A of these n column vectors has dimensions (d+1)\times n and rank d+1. The Gale transform replaces this matrix by a matrix B of dimension n\times (n-d-1), whose column vectors are a basis for the ke ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]