HOME
*





Mathematics Of Apportionment
Mathematics of apportionment describes Mathematics, mathematical principles and algorithms for fair allocation of identical items among parties with different entitlements. Such principles are used to apportion seats in parliaments among federal states or Political party, political parties. See apportionment (politics) for the more concrete principles and issues related to apportionment, and apportionment by country for practical methods used around the world. Mathematically, an apportionment method is just a method of rounding fractions to integers. As simple as it may sound, each and every method for rounding suffers from one or more Apportionment paradox, paradoxes. The mathematical theory of apportionment aims to decide what paradoxes can be avoided, or in other words, what properties can be expected from an apportionment method. The mathematical theory of apportionment was studied as early as 1907 by the mathematician Agner Krarup Erlang. It was later developed to a great detai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coin Flipping
Coin flipping, coin tossing, or heads or tails is the practice of throwing a coin in the air and checking obverse and reverse, which side is showing when it lands, in order to choose between two alternatives, heads or tails, sometimes used to resolve a dispute between two parties. It is a form of sortition which inherently has two possible outcomes. The party who calls the side that is facing up when the coin lands wins. History Coin flipping was known to the Romans as ''navia aut caput'' ("ship or head"), as some coins had a ship on one side and the head of the Roman Emperor, emperor on the other. In England, this was referred to as ''cross and pile''. Process During a coin toss, the coin is thrown into the air such that it rotates edge-over-edge several times. Either beforehand or when the coin is in the air, an interested party declares "heads" or "tails", indicating which side of the coin that party is choosing. The other party is assigned the opposite side. Depending on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rank-index Apportionment Method
A highest-averages method, also called a divisor method, is a class of methods for allocating seats in a parliament among agents such as political parties or federal states. A divisor method is an iterative method: at each iteration, the number of votes of each party is divided by its ''divisor'', which is a function of the number of seats (initially 0) currently allocated to that party. The next seat is allocated to the party whose resulting ratio is largest. Definitions The inputs to a divisor method are the number of seats to allocate, denoted by ''h'', and the vector of parties' entitlements, where the entitlement of party i is denoted by t_i (a number between 0 and 1 determining the fraction of seats to which i is entitled). Assuming all votes are counted, t_i is simply the number of votes received by i, divided by the total number of votes. Procedural definition A divisor method is parametrized by a function d(k), mapping each integer k to a real number (usually in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Webster/Sainte-Laguë Method
The Webster method, also called the Sainte-Laguë method () or the major fractions method, is a method for allocating seats in a parliament among federal states, or among parties in a party-list proportional representation system. The method was first described in 1832 by the American statesman and senator Daniel Webster. In 1842 the method was adopted for proportional allocation of seats in United States congressional apportionment (Act of 25 June 1842, ch 46, 5 Stat. 491). It was then replaced by Hamilton method and in 1911 the Webster method was reintroduced. The method was again replaced in 1940, this time by the Huntington–Hill method. The same method was independently invented in 1910 by the French mathematician André Sainte-Laguë. It seems that French and European literature was unaware of Webster until after World War II. This is the reason for the double name. Description After all the votes have been tallied, successive quotients are calculated for each part ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


D'Hondt Method
The D'Hondt method, also called the Jefferson method or the greatest divisors method, is a method for allocating seats in parliaments among federal states, or in party-list proportional representation systems. It belongs to the class of highest-averages methods. The method was first described in 1792 by future U.S. president Thomas Jefferson. It was re-invented independently in 1878 by Belgian mathematician Victor D'Hondt, which is the reason for its two different names. Motivation Proportional representation systems aim to allocate seats to parties approximately in proportion to the number of votes received. For example, if a party wins one-third of the votes then it should gain about one-third of the seats. In general, exact proportionality is not possible because these divisions produce fractional numbers of seats. As a result, several methods, of which the D'Hondt method is one, have been devised which ensure that the parties' seat allocations, which are of whole numbers, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Highest Averages Method
A highest-averages method, also called a divisor method, is a class of methods for allocating seats in a parliament among agents such as political parties or federal states. A divisor method is an iterative method: at each iteration, the number of votes of each party is divided by its ''divisor'', which is a function of the number of seats (initially 0) currently allocated to that party. The next seat is allocated to the party whose resulting ratio is largest. Definitions The inputs to a divisor method are the number of seats to allocate, denoted by ''h'', and the vector of parties' entitlements, where the entitlement of party i is denoted by t_i (a number between 0 and 1 determining the fraction of seats to which i is entitled). Assuming all votes are counted, t_i is simply the number of votes received by i, divided by the total number of votes. Procedural definition A divisor method is parametrized by a function d(k), mapping each integer k to a real number (usually in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Imperiali Quota
The Imperiali quota is a formula used to calculate the minimum number, or quota, of votes required to capture a seat in some forms of single transferable vote or largest remainder method party-list proportional representation voting systems. It is distinct from the Imperiali method, a type of highest average method. It is named after Belgian senator Pierre Imperiali. The Czech Republic and Ecuador are among the few countries that currently use this allocation system, while Italy used it for its Chamber of Deputies from 1946 to 1993. If many party lists poll just over the Imperiali quota, it is possible for this method to distribute more seats than there are vacancies to fill (this is not possible with the Hare or Droop quotas). If this occurs, the result needs to be recalculated with a higher quota (usually the Droop quota). If it does not happen, Imperiali usually distributes seats in a similar fashion to the D'Hondt method The D'Hondt method, also called the Jefferson met ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hagenbach-Bischoff Quota
The Hagenbach-Bischoff quota (also known as the Newland-Britton quota or the exact Droop quota, as opposed to the more common rounded Droop quota) is a formula used in some voting systems based on proportional representation (PR). It is used in some elections held under the largest remainder method of party-list proportional representation as well as in a variant of the D'Hondt method known as the Hagenbach-Bischoff system. The Hagenbach-Bischoff quota is named for its inventor, Swiss professor of physics and mathematics Eduard Hagenbach-Bischoff (1833–1910) The Hagenbach-Bischoff quota is sometimes referred to as the 'Droop quota' and vice versa (especially in connection with the largest remainder method) because the two are very similar. However, under the Hagenbach-Bischoff and any smaller (e.g. the Imperiali) quota it is theoretically possible for more candidates to reach the quota than there are seats, whereas under the slightly larger Droop quota, this is mathematically ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamilton's Method
The largest remainder method (also known as Hare–Niemeyer method, Hamilton method or as Vinton's method) is one way of allocating seats proportionally for representative assemblies with party list voting systems. It contrasts with various highest averages methods (also known as divisor methods). Method The ''largest remainder method'' requires the numbers of votes for each party to be divided by a quota representing the number of votes ''required'' for a seat (i.e. usually the total number of votes cast divided by the number of seats, or some similar formula). The result for each party will usually consist of an integer part plus a fractional remainder. Each party is first allocated a number of seats equal to their integer. This will generally leave some remainder seats unallocated: the parties are then ranked on the basis of the fractional remainders, and the parties with the largest remainders are each allocated one additional seat until all the seats have been allocate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hare Quota
The Hare quota (also known as the simple quota) is a formula used under some forms of proportional representation. In these voting systems the quota is the number of votes that guarantees a candidate, or a party in some cases, captures a seat. The Hare quota is the total number of votes divided by the number of seats to be filled. This is the simplest quota, but the Droop quota is mostly used currently. The Hare quota can be used in the single transferable vote (STV-Hare) system and the largest remainder method (LR-Hare) and other quota rule compatible methods of party-list proportional representation. Both versions are named after the political scientist Thomas Hare, but the largest remainder method in which it is used is also sometimes called the Hare–Niemeyer method (after Horst Niemeyer) or the Hamilton method (after Alexander Hamilton). Formula The Hare quota may be given as: :\frac where *Total votes = the total valid poll; that is, the number of valid (unspoilt) vo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Largest Remainder Method
The largest remainder method (also known as Hare–Niemeyer method, Hamilton method or as Vinton's method) is one way of allocating seats proportionally for representative assemblies with party list voting systems. It contrasts with various highest averages methods (also known as divisor methods). Method The ''largest remainder method'' requires the numbers of votes for each party to be divided by a quota representing the number of votes ''required'' for a seat (i.e. usually the total number of votes cast divided by the number of seats, or some similar formula). The result for each party will usually consist of an integer part plus a fractional remainder. Each party is first allocated a number of seats equal to their integer. This will generally leave some remainder seats unallocated: the parties are then ranked on the basis of the fractional remainders, and the parties with the largest remainders are each allocated one additional seat until all the seats have been allocated. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topologically Closed
In topology, the closure of a subset of points in a topological space consists of all points in together with all limit points of . The closure of may equivalently be defined as the union of and its boundary, and also as the intersection of all closed sets containing . Intuitively, the closure can be thought of as all the points that are either in or "near" . A point which is in the closure of is a point of closure of . The notion of closure is in many ways dual to the notion of interior. Definitions Point of closure For S as a subset of a Euclidean space, x is a point of closure of S if every open ball centered at x contains a point of S (this point can be x itself). This definition generalizes to any subset S of a metric space X. Fully expressed, for X as a metric space with metric d, x is a point of closure of S if for every r > 0 there exists some s \in S such that the distance d(x, s) < r (x = s is allowed). Another way to express this is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]