Magnetic Chicane
   HOME
*



picture info

Magnetic Chicane
A magnetic chicane also called a bunch compressor helps form dense bunches of electrons in a free-electron laser. A magnetic chicane makes electrons detour slightly from their otherwise straight bath, and in that way is similar to a chicane on a road. A magnetic chicane consists of four dipole magnets, giving electrons at the beginning of a bunch a longer path than electrons at the end of the bunch, thereby allowing the laging electrons to catch up. Free-electron laser A free-electron laser depends upon a beam of tightly bunched electrons. Short bunches of electrons are produced by a photoinjector, but they quickly grow, because electrons have negative charge and little mass, causing the bunch to expand. As the bunch is accelerated, the electrons gain mass and quickly approach the speed of light. After that, electrons at the end of the bunch cannot go any faster to catch up with electrons at the beginning of the bunch. Chirp This problem is solved by adjusting the phase of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Magnetic Chicane
A magnetic chicane also called a bunch compressor helps form dense bunches of electrons in a free-electron laser. A magnetic chicane makes electrons detour slightly from their otherwise straight bath, and in that way is similar to a chicane on a road. A magnetic chicane consists of four dipole magnets, giving electrons at the beginning of a bunch a longer path than electrons at the end of the bunch, thereby allowing the laging electrons to catch up. Free-electron laser A free-electron laser depends upon a beam of tightly bunched electrons. Short bunches of electrons are produced by a photoinjector, but they quickly grow, because electrons have negative charge and little mass, causing the bunch to expand. As the bunch is accelerated, the electrons gain mass and quickly approach the speed of light. After that, electrons at the end of the bunch cannot go any faster to catch up with electrons at the beginning of the bunch. Chirp This problem is solved by adjusting the phase of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free-electron Laser
A free-electron laser (FEL) is a (fourth generation) light source producing extremely brilliant and short pulses of radiation. An FEL functions and behaves in many ways like a laser, but instead of using stimulated emission from atomic or molecular excitations, it employs relativistic electrons as a gain medium. Radiation is generated by a ''bunch'' of electrons passing through a magnetic structure (called undulator or wiggler). In an FEL, this radiation is further amplified as the radiation re-interacts with the electron bunch such that the electrons start to emit coherently, thus allowing an exponential increase in overall radiation intensity. As electron kinetic energy and undulator parameters can be adapted as desired, free-electron lasers are tunable and can be built for a wider frequency range than any other type of laser, currently ranging in wavelength from microwaves, through terahertz radiation and infrared, to the visible spectrum, ultraviolet, and X-ray. The first ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chicane
A chicane () is a serpentine curve in a road, added by design rather than dictated by geography. Chicanes add extra turns and are used both in motor racing and on roads and streets to slow traffic for safety. For example, one form of chicane is a short, shallow S-shaped turn that requires the driver to turn slightly left and then slightly right to continue on the road, requiring the driver to reduce speed. The word ''chicane'' is derived from the French verb ''chicaner'', which means "to create difficulties" or "to dispute pointlessly", "quibble", which is also the root of the English noun ''chicanery''. Motor racing On modern racing circuits, chicanes are usually located after long straights, making them a prime location for overtaking. They can be placed tactically by circuit designers to prevent vehicles from reaching speeds deemed to be unsafe. A prime example of this is the three chicanes at the Autodromo Nazionale Monza, introduced in the early 1970s; the Chase at Mount ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetic Dipole
In electromagnetism, a magnetic dipole is the limit of either a closed loop of electric current or a pair of poles as the size of the source is reduced to zero while keeping the magnetic moment constant. It is a magnetic analogue of the electric dipole, but the analogy is not perfect. In particular, a true magnetic monopole, the magnetic analogue of an electric charge, has never been observed in nature. However, magnetic monopole quasiparticles have been observed as emergent properties of certain condensed matter systems. Moreover, one form of magnetic dipole moment is associated with a fundamental quantum property—the spin of elementary particles. Because magnetic monopoles do not exist, the magnetic field at a large distance from any static magnetic source looks like the field of a dipole with the same dipole moment. For higher-order sources (e.g. quadrupoles) with no dipole moment, their field decays towards zero with distance faster than a dipole field does. External mag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Photoinjector
A photoinjector is a type of source for intense electron beams which relies on the photoelectric effect. A laser pulse incident onto the cathode of a photoinjector drives electrons out of it, and into the accelerating field of the electron gun. In comparison with the widespread thermionic electron gun, photoinjectors produce electron beams of higher brightness, which means more particles packed into smaller volume of phase space (beam emittance). Photoinjectors serve as the main electron source for single-pass synchrotron light sources, such as free-electron lasers and for ultrafast electron diffraction setups. The first RF photoinjector was developed in 1985 at Los Alamos National Laboratory and used as the source for a free-electron-laser experiment. High-brightness electron beams produced by photoinjectors are used directly or indirectly to probe the molecular, atomic and nuclear structure of matter for fundamental research, as well as material characterization. A photoinjector ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chirp
A chirp is a signal in which the frequency increases (''up-chirp'') or decreases (''down-chirp'') with time. In some sources, the term ''chirp'' is used interchangeably with sweep signal. It is commonly applied to sonar, radar, and laser systems, and to other applications, such as in spread-spectrum communications (see chirp spread spectrum). This signal type is biologically inspired and occurs as a phenomenon due to dispersion (a non-linear dependence between frequency and the propagation speed of the wave components). It is usually compensated for by using a matched filter, which can be part of the propagation channel. Depending on the specific performance measure, however, there are better techniques both for radar and communication. Since it was used in radar and space, it has been adopted also for communication standards. For automotive radar applications, it is usually called linear frequency modulated waveform (LFMW). In spread-spectrum usage, surface acoustic wave (SAW) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Beam Emittance
In accelerator physics, emittance is a property of a charged particle beam. It refers to the area occupied by the beam in a position-and-momentum phase space. Each particle in a beam can be described by its position and momentum along each of three orthogonal axes, for a total of six position and momentum coordinates. When the position and momentum for a single axis are plotted on a two dimensional graph, the average spread of the coordinates on this plot are the emittance. As such, a beam will have three emittances, one along each axis, which can be described independently. As particle momentum along an axis is usually described as an angle relative to that axis, an area on a position-momentum plot will have dimensions of length × angle (for example, millimeters × milliradian). Emittance is important for analysis of particle beams. As long as the beam is only subjected to conservative forces, Liouville's Theorem shows that emittance is a conserved quantity. If t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electron Beam
Cathode rays or electron beam (e-beam) are streams of electrons observed in discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to electrons emitted from the cathode (the electrode connected to the negative terminal of the voltage supply). They were first observed in 1859 by German physicist Julius Plücker and Johann Wilhelm Hittorf, and were named in 1876 by Eugen Goldstein ''Kathodenstrahlen'', or cathode rays. In 1897, British physicist J. J. Thomson showed that cathode rays were composed of a previously unknown negatively charged particle, which was later named the ''electron''. Cathode-ray tubes (CRTs) use a focused beam of electrons deflected by electric or magnetic fields to render an image on a screen. Description Cathode rays are so named because they are emitted by the negative electrode, or cathode, in a vacuum tube. To release electrons into the tube, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]