HOME
*





Loop Quantum Cosmology
Loop quantum cosmology (LQC) is a finite, symmetry-reduced model of loop quantum gravity ( LQG) that predicts a "quantum bridge" between contracting and expanding cosmological branches. The distinguishing feature of LQC is the prominent role played by the quantum geometry effects of loop quantum gravity (LQG). In particular, quantum geometry creates a brand new repulsive force which is totally negligible at low space-time curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction and thereby resolving singularities of general relativity. Once singularities are resolved, the conceptual paradigm of cosmology changes and one has to revisit many of the standard issues—e.g., the " horizon problem"—from a new perspective. Since LQG is based on a specific quantum theory of Riemannian geometry, geometric observables display a fundamental discreteness that play a key role in quantum dynamics: While predictions of LQC are very close t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Cosmology
Quantum cosmology is the attempt in theoretical physics to develop a quantum theory of the universe. This approach attempts to answer open questions of classical physical cosmology, particularly those related to the first phases of the universe. Classical cosmology is based on Albert Einstein's general theory of relativity (GTR or simply GR) which describes the evolution of the universe very well, as long as you do not approach the Big Bang. It is the gravitational singularity and the Planck time where relativity theory fails to provide what must be demanded of a final theory of space and time. Therefore, a theory is needed that integrates relativity theory and quantum theory. Such an approach is attempted for instance with loop quantum cosmology, loop quantum gravity, string theory and causal set theory. In quantum cosmology, the universe is treated as a wave function instead of classical spacetime. See also * String cosmology * Brane cosmology * Loop quantum cosmolog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamiltonian (quantum Mechanics)
Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian with two-electron nature ** Molecular Hamiltonian, the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule * Hamiltonian (control theory), a function used to solve a problem of optimal control for a dynamical system * Hamiltonian path, a path in a graph that visits each vertex exactly once * Hamiltonian group, a non-abelian group the subgroups of which are all normal * Hamiltonian economic program The Hamiltonian economic program was the set of measures that were proposed by American Founding Father and first Secretary of the Treasury Alexander Hamilton in four notable reports and implemented by the US Congress during George Washington's ..., the economic policies advocated by Alexander Hamilton ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Canonical Quantum Gravity
In physics, canonical quantum gravity is an attempt to quantize the canonical formulation of general relativity (or canonical gravity). It is a Hamiltonian formulation of Einstein's general theory of relativity. The basic theory was outlined by Bryce DeWitt in a seminal 1967 paper, and based on earlier work by Peter G. Bergmann using the so-called canonical quantization techniques for constrained Hamiltonian systems invented by Paul Dirac. Dirac's approach allows the quantization of systems that include gauge symmetries using Hamiltonian techniques in a fixed gauge choice. Newer approaches based in part on the work of DeWitt and Dirac include the Hartle–Hawking state, Regge calculus, the Wheeler–DeWitt equation and loop quantum gravity. Canonical quantization In the Hamiltonian formulation of ordinary classical mechanics the Poisson bracket is an important concept. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Problem Of Time
In theoretical physics, the problem of time is a conceptual conflict between general relativity and quantum mechanics in that quantum mechanics regards the flow of time as universal and absolute, whereas general relativity regards the flow of time as malleable and relative. This problem raises the question of what time really is in a physical sense and whether it is truly a real, distinct phenomenon. It also involves the related question of why time seems to flow in a single direction, despite the fact that no known physical laws at the microscopic level seem to require a single direction. For macroscopic systems the directionality of time is directly linked to first principles such as the second law of thermodynamics. Time in quantum mechanics In classical mechanics, a special status is assigned to time in the sense that it is treated as a classical background parameter, external to the system itself. This special role is seen in the standard formulation of quantum mechanics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scale Invariance
In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality. The technical term for this transformation is a dilatation (also known as dilation), and the dilatations can also form part of a larger conformal symmetry. *In mathematics, scale invariance usually refers to an invariance of individual functions or curves. A closely related concept is self-similarity, where a function or curve is invariant under a discrete subset of the dilations. It is also possible for the probability distributions of random processes to display this kind of scale invariance or self-similarity. *In classical field theory, scale invariance most commonly applies to the invariance of a whole theory under dilatations. Such theories typically describe classical physical processes with no characteristic length scale. *In quantum field t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Space-time
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why different observers perceive differently where and when events occur. Until the 20th century, it was assumed that the three-dimensional geometry of the universe (its spatial expression in terms of coordinates, distances, and directions) was independent of one-dimensional time. The physicist Albert Einstein helped develop the idea of spacetime as part of his theory of relativity. Prior to his pioneering work, scientists had two separate theories to explain physical phenomena: Isaac Newton's laws of physics described the motion of massive objects, while James Clerk Maxwell's electromagnetic models explained the properties of light. However, in 1905, Einstein based a work on special relativity on two postulates: * The laws of physics are invariant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spinfoam
In physics, the topological structure of spinfoam or spin foam consists of two-dimensional faces representing a configuration required by functional integration to obtain a Feynman's path integral description of quantum gravity. These structures are employed in loop quantum gravity as a version of quantum foam. In loop quantum gravity The covariant formulation of loop quantum gravity provides the best formulation of the dynamics of the theory of quantum gravity – a quantum field theory where the invariance under diffeomorphisms of general relativity applies. The resulting path integral represents a sum over all the possible configurations of spin foam. Spin network A spin network is a one-dimensional graph, together with labels on its vertices and edges which encode aspects of a spatial geometry. A spin network is defined as a diagram like the Feynman diagram which makes a basis of connections between the elements of a differentiable manifold for the Hilbert spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Carlo Rovelli
Carlo Rovelli (born May 3, 1956) is an Italian theoretical physicist and writer who has worked in Italy, the United States and, since 2000, in France. He is also currently a Distinguished Visiting Research Chair at the Perimeter Institute, and core member of the Rotman Institute of Philosophy of the Western University. He works mainly in the field of quantum gravity and is a founder of loop quantum gravity theory. He has also worked in the history and philosophy of science. He collaborates with several Italian newspapers, including the cultural supplements of the ''Corriere della Sera'', ''Il Sole 24 Ore'' and ''La Repubblica''. His popular science book, ''Seven Brief Lessons on Physics'', was originally published in Italian in 2014. It has been translated into 41 languages and has sold over a million copies worldwide. In 2019, he was included by '' Foreign Policy'' magazine in a list of 100 most influential global thinkers. Life and career Carlo Rovelli was born in Verona, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tomasz Pawłowski
Tomasz is a Polish given name, the equivalent of Thomas in English. Notable people with the given name include: *Tomasz Adamek (born 1976), Polish heavyweight boxer *Tomasz Arciszewski (1877–1955), Polish socialist politician and Prime Minister of the Polish government-in-exile in London (1944–1947) *Tomasz Bajerski (born 1975), Polish motorcycle speedway rider who won the Team Polish Champion title in 2001 * Tomasz Bednarek (born 1981), Polish tennis player *Tomasz Beksiński (1958–1999), Polish radio presenter, music journalist and movie translator *Tomasz Chrzanowski (born 1980), Polish motorcycle speedway rider who has been a member of the Polish national team * Tomasz Fornal (born 1997), Polish volleyball player, member of Poland men's national volleyball team and silver medallist at the 2022 World Championships * Tomasz Frankowski (born 1974), Polish footballer (senior career from 1991) *Tomasz Gapiński (born 1982), Polish international motorcycle speedway ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]