Leray–Hirsch Theorem
   HOME
*





Leray–Hirsch Theorem
In mathematics, the Leray–Hirsch theorem is a basic result on the algebraic topology of fiber bundles. It is named after Jean Leray and Guy Hirsch, who independently proved it in the late 1940s. It can be thought of as a mild generalization of the Künneth formula, which computes the cohomology of a product space as a tensor product of the cohomologies of the direct factors. It is a very special case of the Leray spectral sequence. Statement Setup Let \pi\colon E\longrightarrow B be a fibre bundle with fibre F. Assume that for each degree p, the singular cohomology rational vector space :H^p(F) = H^p(F; \mathbb) is finite-dimensional, and that the inclusion :\iota\colon F \longrightarrow E induces a ''surjection'' in rational cohomology :\iota^* \colon H^*(E) \longrightarrow H^*(F). Consider a ''section'' of this surjection : s\colon H^*(F) \longrightarrow H^*(E), by definition, this map satisfies :\iota^* \circ s = \mathrm . The Leray–Hirsch isomorphism The Leray–Hirsc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fiber Bundle
In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a product space B \times F is defined using a continuous surjective map, \pi : E \to B, that in small regions of E behaves just like a projection from corresponding regions of B \times F to B. The map \pi, called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space E is known as the total space of the fiber bundle, B as the base space, and F the fiber. In the ''trivial'' case, E is just B \times F, and the map \pi is just the projection from the product space to the first factor. This is called a trivial bundle. Examples of non-trivial fiber bundles include the Möbius strip and Klein bottle, as well as nontrivial covering spaces. Fiber bundles, such as the tangent bundle of a mani ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jean Leray
Jean Leray (; 7 November 1906 – 10 November 1998) was a French mathematician, who worked on both partial differential equations and algebraic topology. Life and career He was born in Chantenay-sur-Loire (today part of Nantes). He studied at École Normale Supérieure from 1926 to 1929. He received his Ph.D. in 1933. In 1934 Leray published an important paper that founded the study of weak solutions of the Navier–Stokes equations. In the same year, he and Juliusz Schauder discovered a topological invariant, now called the Leray–Schauder degree, which they applied to prove the existence of solutions for partial differential equations lacking uniqueness. From 1938 to 1939 he was professor at the University of Nancy. He did not join the Bourbaki group, although he was close with its founders. His main work in topology was carried out while he was in a prisoner of war camp in Edelbach, Austria from 1940 to 1945. He concealed his expertise on differential equations, fearing th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Guy Hirsch
Guy Hirsch (20 September 1915 – 4 August 1993) was a Belgian mathematician and philosopher of mathematics, who worked on algebraic topology and epistemology of mathematics. He became a member of the Royal Flemish Academy of Belgium for Science and the Arts in 1973. He is known for the Leray–Hirsch theorem, a basic result on the algebraic topology of fiber bundles that he proved independently of Jean Leray Jean Leray (; 7 November 1906 – 10 November 1998) was a French mathematician, who worked on both partial differential equations and algebraic topology. Life and career He was born in Chantenay-sur-Loire (today part of Nantes). He studied at Éc ... in the late 1940s. References External links * 1915 births Mathematicians from London 1993 deaths Belgian mathematicians Topologists Free University of Brussels (1834–1969) alumni Academic staff of the Free University of Brussels (1834–1969) British emigrants to Belgium {{europe-mathematician-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Künneth Formula
Künneth is a surname. Notable people with the surname include: * Hermann Künneth (1892–1975), German mathematician * Walter Künneth Walter Künneth (1 January 1901 in Etzelwang – 26 October 1997 in Erlangen) was a German Protestant theologian. During the Nazi era, he was part of the Confessing Church, and in the 1960s took part in the debate around the demands of Rudolf Bultm ... (1901–1997), German Protestant theologian {{DEFAULTSORT:Kunneth German-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Leray Spectral Sequence
In mathematics, the Leray spectral sequence was a pioneering example in homological algebra, introduced in 1946 by Jean Leray. It is usually seen nowadays as a special case of the Grothendieck spectral sequence. Definition Let f:X\to Y be a continuous map of topological spaces, which in particular gives a functor f_* from sheaves of abelian groups on X to sheaves of abelian groups on Y. Composing this with the functor \Gamma of taking sections on \text_\text(Y) is the same as taking sections on \text_\text(X), by the definition of the direct image functor f_*: :\mathrm (X) \xrightarrow \mathrm(Y) \xrightarrow \mathrm. Thus the derived functors of \Gamma \circ f_* compute the sheaf cohomology for X: : R^i (\Gamma \cdot f_*)(\mathcal)=H^i(X,\mathcal). But because f_* and \Gamma send injective objects in \text_\text(X) to \Gamma- acyclic objects in \text_\text(Y), there is a spectral sequencepg 33,19 whose second page is : E^_2=(R^p\Gamma \cdot R^q f_*)(\mathcal)=H^p(Y,R^qf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibre Bundle
In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a product space B \times F is defined using a continuous surjective map, \pi : E \to B, that in small regions of E behaves just like a projection from corresponding regions of B \times F to B. The map \pi, called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space E is known as the total space of the fiber bundle, B as the base space, and F the fiber. In the ''trivial'' case, E is just B \times F, and the map \pi is just the projection from the product space to the first factor. This is called a trivial bundle. Examples of non-trivial fiber bundles include the Möbius strip and Klein bottle, as well as nontrivial covering spaces. Fiber bundles, such as the tangent bundle of a manifold ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Singular Cohomology
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory. From its beginning in topology, this idea became a dominant method in the mathematics of the second half of the twentieth century. From the initial idea of homology as a method of constructing algebraic invariants of topological spaces, the range of applications of homology and cohomology theories has spread throughout geometry and algebra. The terminology tends to hide the fact that cohomology, a contravariant theory, is more natural than homology in many applications. At a basic level, this has to do w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος ''isos'' "equal", and μορφή ''morphe'' "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may be identified. In mathematical jargon, one says that two objects are . An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a canonical isomorphism (a canonical map that is an isomorphism) if there is only one isomorphism between the two structures (as it is the case for solutions of a univer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]