Lebesgue Spine
   HOME
*





Lebesgue Spine
In mathematics, in the area of potential theory, a Lebesgue spine or Lebesgue thorn is a type of set used for discussing solutions to the Dirichlet problem and related problems of potential theory. The Lebesgue spine was introduced in 1912 by Henri Lebesgue to demonstrate that the Dirichlet problem does not always have a solution, particularly when the boundary has a sufficiently sharp edge protruding into the interior of the region. Definition A typical Lebesgue spine in \R^n, for n\ge 3, is defined as follows :S = \. The important features of this set are that it is connected and path-connected in the euclidean topology in \R^n and the origin is a limit point of the set, and yet the set is thin at the origin, as defined in the article Fine topology (potential theory). Observations The set S is not closed in the euclidean topology since it does not contain the origin which is a limit point In mathematics, a limit point, accumulation point, or cluster point of a set S in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Potential Theory
In mathematics and mathematical physics, potential theory is the study of harmonic functions. The term "potential theory" was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gravity and the electrostatic force, could be modeled using functions called the gravitational potential and electrostatic potential, both of which satisfy Poisson's equation—or in the vacuum, Laplace's equation. There is considerable overlap between potential theory and the theory of Poisson's equation to the extent that it is impossible to draw a distinction between these two fields. The difference is more one of emphasis than subject matter and rests on the following distinction: potential theory focuses on the properties of the functions as opposed to the properties of the equation. For example, a result about the singularities of harmonic functions would be said to belong to potential theory whilst a result on how the solution depends ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set (mathematics)
A set is the mathematical model for a collection of different things; a set contains '' elements'' or ''members'', which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. History The concept of a set emerged in mathematics at the end of the 19th century. The German word for set, ''Menge'', was coined by Bernard Bolzano in his work ''Paradoxes of the Infinite''. Georg Cantor, one of the founders of set theory, gave the following defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet Problem
In mathematics, a Dirichlet problem is the problem of finding a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region. The Dirichlet problem can be solved for many PDEs, although originally it was posed for Laplace's equation. In that case the problem can be stated as follows: :Given a function ''f'' that has values everywhere on the boundary of a region in R''n'', is there a unique continuous function ''u'' twice continuously differentiable in the interior and continuous on the boundary, such that ''u'' is harmonic in the interior and ''u'' = ''f'' on the boundary? This requirement is called the Dirichlet boundary condition. The main issue is to prove the existence of a solution; uniqueness can be proved using the maximum principle. History The Dirichlet problem goes back to George Green, who studied the problem on general domains with general boundary condi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Henri Lebesgue
Henri Léon Lebesgue (; June 28, 1875 – July 26, 1941) was a French mathematician known for his theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an axis and the curve of a function defined for that axis. His theory was published originally in his dissertation ''Intégrale, longueur, aire'' ("Integral, length, area") at the University of Nancy during 1902. Personal life Henri Lebesgue was born on 28 June 1875 in Beauvais, Oise. Lebesgue's father was a typesetter and his mother was a school teacher. His parents assembled at home a library that the young Henri was able to use. His father died of tuberculosis when Lebesgue was still very young and his mother had to support him by herself. As he showed a remarkable talent for mathematics in primary school, one of his instructors arranged for community support to continue his education at the Collège de Beauvais and then at Lycée Saint-Louis and Lycée Louis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected Set
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Path-connected
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topological s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclidean Topology
In mathematics, and especially general topology, the Euclidean topology is the natural topology induced on n-dimensional Euclidean space \R^n by the Euclidean distance, Euclidean metric. Definition The Euclidean norm on \R^n is the non-negative function \, \cdot\, : \R^n \to \R defined by \left\, \left(p_1, \ldots, p_n\right)\right\, ~:=~ \sqrt. Like all Norm (mathematics), norms, it induces a canonical Metric (mathematics), metric defined by d(p, q) = \, p - q\, . The metric d : \R^n \times \R^n \to \R induced by the Euclidean norm is called the Euclidean metric or the Euclidean distance and the distance between points p = \left(p_1, \ldots, p_n\right) and q = \left(q_1, \ldots, q_n\right) is d(p, q) ~=~ \, p - q\, ~=~ \sqrt. In any metric space, the Ball (mathematics), open balls form a Base (topology), base for a topology on that space.Metric space, Metric space#Open and closed sets.2C topology and convergence The Euclidean topology on \R^n is the topology by these balls ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit Point
In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also contains a point of S other than x itself. A limit point of a set S does not itself have to be an element of S. There is also a closely related concept for sequences. A cluster point or accumulation point of a sequence (x_n)_ in a topological space X is a point x such that, for every neighbourhood V of x, there are infinitely many natural numbers n such that x_n \in V. This definition of a cluster or accumulation point of a sequence generalizes to nets and filters. The similarly named notion of a (respectively, a limit point of a filter, a limit point of a net) by definition refers to a point that the sequence converges to (respectively, the filter converges to, the net converges to). Importantly, although "limit point of a set" is synon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fine Topology (potential Theory)
In mathematics, in the field of potential theory, the fine topology is a natural topology for setting the study of subharmonic functions. In the earliest studies of subharmonic functions, namely those for which \Delta u \ge 0, where \Delta is the Laplacian, only smooth functions were considered. In that case it was natural to consider only the Euclidean topology, but with the advent of upper semi-continuous subharmonic functions introduced by F. Riesz, the fine topology became the more natural tool in many situations. Definition The fine topology on the Euclidean space \R^n is defined to be the coarsest topology making all subharmonic functions (equivalently all superharmonic functions) continuous. Concepts in the fine topology are normally prefixed with the word 'fine' to distinguish them from the corresponding concepts in the usual topology, as for example 'fine neighbourhood' or 'fine continuous'. Observations The fine topology was introduced in 1940 by Henri Cart ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]