In mathematics, and especially
general topology
In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geomet ...
, the Euclidean topology is the
natural topology
In any domain of mathematics, a space has a natural topology if there is a topology on the space which is "best adapted" to its study within the domain in question. In many cases this imprecise definition means little more than the assertion that ...
induced on
-dimensional
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
by the
Euclidean metric
In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points.
It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore occ ...
.
Definition
The
Euclidean norm
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean s ...
on
is the non-negative function
defined by
Like all
norms, it induces a canonical
metric
Metric or metrical may refer to:
* Metric system, an internationally adopted decimal system of measurement
* An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement
Mathematics
In mathem ...
defined by
The metric
induced by the
Euclidean norm
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean s ...
is called the
Euclidean metric
In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points.
It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore occ ...
or the
Euclidean distance
In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points.
It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefor ...
and the distance between points
and
is
In any
metric space
In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general settin ...
, the
open balls
In mathematics, a ball is the solid figure bounded by a ''sphere''; it is also called a solid sphere. It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them).
These concepts are defin ...
form a
base for a topology on that space.
[ Metric space#Open and closed sets.2C topology and convergence]
The Euclidean topology on
is the topology by these balls.
In other words, the open sets of the Euclidean topology on
are given by (arbitrary) unions of the open balls
defined as
for all real
and all
where
is the Euclidean metric.
Properties
When endowed with this topology, the real line
is a
T5 space.
Given two subsets say
and
of
with
where
denotes the
closure of
there exist open sets
and
with
and
such that
See also
*
*
*
References
{{reflist
Topology