Las Vegas Algorithm
   HOME





Las Vegas Algorithm
In computing, a Las Vegas algorithm is a randomized algorithm that always gives Correctness (computer science), correct results; that is, it always produces the correct result or it informs about the failure. However, the runtime of a Las Vegas algorithm differs depending on the input. The usual definition of a Las Vegas algorithm includes the restriction that the ''expected'' runtime be finite, where the expectation is carried out over the space of random information, or entropy, used in the algorithm. An alternative definition requires that a Las Vegas algorithm always terminates (is Effective method, effective), but may output a Partial function#Bottom element, symbol not part of the solution space to indicate failure in finding a solution. The nature of Las Vegas algorithms makes them suitable in situations where the number of possible solutions is limited, and where verifying the correctness of a candidate solution is relatively easy while finding a solution is complex. Systema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computing
Computing is any goal-oriented activity requiring, benefiting from, or creating computer, computing machinery. It includes the study and experimentation of algorithmic processes, and the development of both computer hardware, hardware and software. Computing has scientific, engineering, mathematical, technological, and social aspects. Major computing disciplines include computer engineering, computer science, cybersecurity, data science, information systems, information technology, and software engineering. The term ''computing'' is also synonymous with counting and calculation, calculating. In earlier times, it was used in reference to the action performed by Mechanical computer, mechanical computing machines, and before that, to Computer (occupation), human computers. History The history of computing is longer than the history of computing hardware and includes the history of methods intended for pen and paper (or for chalk and slate) with or without the aid of tables. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complexity Class
In computational complexity theory, a complexity class is a set (mathematics), set of computational problems "of related resource-based computational complexity, complexity". The two most commonly analyzed resources are time complexity, time and space complexity, memory. In general, a complexity class is defined in terms of a type of computational problem, a model of computation, and a bounded resource like time complexity, time or space complexity, memory. In particular, most complexity classes consist of decision problems that are solvable with a Turing machine, and are differentiated by their time or space (memory) requirements. For instance, the class P (complexity), P is the set of decision problems solvable by a deterministic Turing machine in polynomial time. There are, however, many complexity classes defined in terms of other types of problems (e.g. Counting problem (complexity), counting problems and function problems) and using other models of computation (e.g. probabil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Randomness
In common usage, randomness is the apparent or actual lack of definite pattern or predictability in information. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual random events are, by definition, unpredictable, but if there is a known probability distribution, the frequency of different outcomes over repeated events (or "trials") is predictable.Strictly speaking, the frequency of an outcome will converge almost surely to a predictable value as the number of trials becomes arbitrarily large. Non-convergence or convergence to a different value is possible, but has probability zero. Consistent non-convergence is thus evidence of the lack of a fixed probability distribution, as in many evolutionary processes. For example, when throwing two dice, the outcome of any particular roll is unpredictable, but a sum of 7 will tend to occur twice as often as 4. In this view, randomness is not haphaza ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Atlantic City Algorithm
Atlantic City algorithm is a probabilistic polynomial time algorithm ( PP Complexity Class) that answers correctly at least 75% of the time (or, in some versions, some other value greater than 50%). The term " Atlantic City" was first introduced in 1982 by J. Finn in an unpublished manuscript entitled ''Comparison of probabilistic tests for primality''. Two other common classes of probabilistic algorithms are Monte Carlo algorithms and Las Vegas algorithms. Monte Carlo algorithms are always fast, but only probably correct. On the other hand, Las Vegas algorithms are always correct, but only probably fast. The Atlantic City algorithms, which are bounded probabilistic polynomial time algorithms are probably correct and probably fast. See also * Monte Carlo Algorithm * Las Vegas Algorithm In computing, a Las Vegas algorithm is a randomized algorithm that always gives Correctness (computer science), correct results; that is, it always produces the correct result or it informs ab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Microsoft PowerPoint
Microsoft PowerPoint is a presentation program, developed by Microsoft. It was originally created by Robert Gaskins, Tom Rudkin, and Dennis Austin at a software company named Forethought, Inc. It was released on April 20, 1987, initially for Macintosh computers only. Microsoft acquired PowerPoint for about $14 million three months after it appeared. This was Microsoft's first significant acquisition, and Microsoft set up a new business unit for PowerPoint in Silicon Valley where Forethought had been located. PowerPoint became a component of the Microsoft Office suite, first offered in 1989 for Macintosh and in 1990 for Microsoft Windows, Windows, which bundled several Microsoft apps. Beginning with PowerPoint 4.0 (1994), PowerPoint was integrated into Microsoft Office development, and adopted shared common components and a converged user interface. PowerPoint's market share was very small at first, prior to introducing a version for Microsoft Windows, but grew rapidly wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Markov's Inequality
In probability theory, Markov's inequality gives an upper bound on the probability that a non-negative random variable is greater than or equal to some positive Constant (mathematics), constant. Markov's inequality is tight in the sense that for each chosen positive constant, there exists a random variable such that the inequality is in fact an equality. It is named after the Russian mathematician Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev (Markov's teacher), and many sources, especially in Mathematical analysis, analysis, refer to it as Chebyshev's inequality (sometimes, calling it the first Chebyshev inequality, while referring to Chebyshev's inequality as the second Chebyshev inequality) or Irénée-Jules Bienaymé, Bienaymé's inequality. Markov's inequality (and other similar inequalities) relate probabilities to expected value, expectations, and provide (frequently loose but still useful) bounds for the cumulative distribution function of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur."Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th ed., (2009), .William Feller, ''An Introduction to Probability Theory and Its Applications'', vol. 1, 3rd ed., (1968), Wiley, . This number is often expressed as a percentage (%), ranging from 0% to 100%. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%). These concepts have been given an axiomatic mathematical formaliza ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

RP (complexity)
In computational complexity theory, randomized polynomial time (RP) is the complexity class of problems for which a probabilistic Turing machine exists with these properties: * It always runs in polynomial time in the input size * If the correct answer is NO, it always returns NO * If the correct answer is YES, then it returns YES with probability at least 1/2 (otherwise, it returns NO). In other words, the algorithm is allowed to flip a truly random coin while it is running. The only case in which the algorithm can return YES is if the actual answer is YES; therefore if the algorithm terminates and produces YES, then the correct answer is definitely YES; however, the algorithm can terminate with NO ''regardless'' of the actual answer. That is, if the algorithm returns NO, it might be wrong. Some authors call this class R, although this name is more commonly used for the class of recursive languages. If the correct answer is YES and the algorithm is run ''n'' times with the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zero-error Probabilistic Polynomial Time
In complexity theory, ZPP (zero-error probabilistic polynomial time) is the complexity class of problems for which a probabilistic Turing machine exists with these properties: * It always returns the correct YES or NO answer. * The running time is polynomial in expectation for every input. In other words, if the algorithm is allowed to flip a truly-random coin while it is running, it will always return the correct answer and, for a problem of size ''n'', there is some polynomial ''p''(''n'') such that the average running time will be less than ''p''(''n''), even though it might occasionally be much longer. Such an algorithm is called a Las Vegas algorithm. Alternatively, ZPP can be defined as the class of problems for which a probabilistic Turing machine exists with these properties: * It always runs in polynomial time. * It returns an answer YES, NO or DO NOT KNOW. * The answer is always either DO NOT KNOW or the correct answer. * It returns DO NOT KNOW with probability at mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Expected Value
In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first Moment (mathematics), moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean, mean of the possible values a random variable can take, weighted by the probability of those outcomes. Since it is obtained through arithmetic, the expected value sometimes may not even be included in the sample data set; it is not the value you would expect to get in reality. The expected value of a random variable with a finite number of outcomes is a weighted average of all possible outcomes. In the case of a continuum of possible outcomes, the expectation is defined by Integral, integration. In the axiomatic foundation for probability provided by measure theory, the expectation is given by Lebesgue integration. The expected value of a random variable is often denoted by , , or , with a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decision Problem
In computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question on a set of input values. An example of a decision problem is deciding whether a given natural number is prime. Another example is the problem, "given two numbers ''x'' and ''y'', does ''x'' evenly divide ''y''?" A decision procedure for a decision problem is an algorithmic method that answers the yes-no question on all inputs, and a decision problem is called decidable if there is a decision procedure for it. For example, the decision problem "given two numbers ''x'' and ''y'', does ''x'' evenly divide ''y''?" is decidable since there is a decision procedure called long division that gives the steps for determining whether ''x'' evenly divides ''y'' and the correct answer, ''YES'' or ''NO'', accordingly. Some of the most important problems in mathematics are undecidable, e.g. the halting problem. The field of computational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eight Queens Problem
The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions. The problem was first posed in the mid-19th century. In the modern era, it is often used as an example problem for various computer programming techniques. The eight queens puzzle is a special case of the more general ''n'' queens problem of placing ''n'' non-attacking queens on an ''n''×''n'' chessboard. Solutions exist for all natural numbers ''n'' with the exception of ''n'' = 2 and ''n'' = 3. Although the exact number of solutions is only known for ''n'' ≤ 27, the asymptotic growth rate of the number of solutions is approximately (0.143 ''n'')''n''. History Chess composer Max Bezzel published the eight queens puzzle in 1848. Franz Nauck published the first solutions in 1850.W. W. Rouse Ball (1960) "The Eight Queens Problem", ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]