Logic Translation
Logic translation is the process of representing a text in the formal language of a logical system. If the original text is formulated in ordinary language then the term "natural language formalization" is often used. An example is the translation of the English sentence "some men are bald" into first-order logic as \exist x (M(x) \land B(x)). In this regard, the purpose is to reveal the logical structure of arguments. This makes it possible to use the precise rules of formal logic to assess whether these arguments are correct. It can also guide reasoning by arriving at new conclusions. Many of the difficulties associated with the process are caused by vague or ambiguous expressions in natural language. For example, the English word "is" can mean that something exists, that it is identical to something else, or that it has a certain property. This contrasts with the precise nature of formal logic, which avoids such ambiguities. Natural language formalization is relevant to var ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Example Formalization
Example may refer to: * '' exempli gratia'' (e.g.), usually read out in English as "for example" * .example, reserved as a domain name that may not be installed as a top-level domain of the Internet ** example.com, example.net, example.org, example.edu, second-level domain names reserved for use in documentation as examples * HMS ''Example'' (P165), an Archer-class patrol and training vessel of the Royal Navy Arts * ''The Example'', a 1634 play by James Shirley * ''The Example'' (comics), a 2009 graphic novel by Tom Taylor and Colin Wilson * Example (musician), the British dance musician Elliot John Gleave (born 1982) * ''Example'' (album), a 1995 album by American rock band For Squirrels See also * * Exemplar (other), a prototype or model which others can use to understand a topic better * Exemplum, medieval collections of short stories to be told in sermons * Eixample The Eixample (; ) is a district of Barcelona between the old city (Ciutat Vella) and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logic Programming
Logic programming is a programming paradigm which is largely based on formal logic. Any program written in a logic programming language is a set of sentences in logical form, expressing facts and rules about some problem domain. Major logic programming language families include Prolog, answer set programming (ASP) and Datalog. In all of these languages, rules are written in the form of ''clauses'': :H :- B1, …, Bn. and are read declaratively as logical implications: :H if B1 and … and Bn. H is called the ''head'' of the rule and B1, ..., Bn is called the ''body''. Facts are rules that have no body, and are written in the simplified form: :H. In the simplest case in which H, B1, ..., Bn are all atomic formulae, these clauses are called definite clauses or Horn clauses. However, there are many extensions of this simple case, the most important one being the case in which conditions in the body of a clause can also be negations of atomic formulas. Logic programming languag ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rule Of Inference
In the philosophy of logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of inference called ''modus ponens'' takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion. Typically, a rule of inference preserves truth, a semantic property. In many-valued logic, it preserves a general designation. But a rule of inference's action is purely syntactic, and does not need to preserve any semantic property: any function from sets of formulae to formulae counts as a rule of inference. Usually only rules that are recursive are important; i.e. rules suc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Deductive Reasoning
Deductive reasoning is the mental process of drawing deductive inferences. An inference is deductively valid if its conclusion follows logically from its premises, i.e. if it is impossible for the premises to be true and the conclusion to be false. For example, the inference from the premises "all men are mortal" and "Socrates is a man" to the conclusion "Socrates is mortal" is deductively valid. An argument is ''sound'' if it is ''valid'' and all its premises are true. Some theorists define deduction in terms of the intentions of the author: they have to intend for the premises to offer deductive support to the conclusion. With the help of this modification, it is possible to distinguish valid from invalid deductive reasoning: it is invalid if the author's belief about the deductive support is false, but even invalid deductive reasoning is a form of deductive reasoning. Psychology is interested in deductive reasoning as a psychological process, i.e. how people ''actually'' draw ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Premise
A premise or premiss is a true or false statement that helps form the body of an argument, which logically leads to a true or false conclusion. A premise makes a declarative statement about its subject matter which enables a reader to either agree or disagree with the premise in question, and in doing so understand the logical assumptions of the argument. If a premise is logically false, then the conclusion, which follows from all of the premises of the argument, must also be false—unless the conclusion is supported by a logically valid argument which the reader agrees with. Therefore, if the reader disagrees with any one of the argument's premises, they have a logical basis to reject the conclusion of the argument. Explanation In logic, an argument requires a set of at least two declarative sentences (or "propositions") known as the "premises" (or "premisses"), along with another declarative sentence (or "proposition"), known as the conclusion. This structure of two prem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Modus Ponendo Ponens
In propositional calculus, propositional logic, ''modus ponens'' (; MP), also known as ''modus ponendo wiktionary:ponens, ponens'' (Latin for "method of putting by placing") or implication elimination or affirming the antecedent, is a Deductive reasoning, deductive argument form and rule of inference. It can be summarized as "''P material conditional, implies Q.'' ''P'' is true. Therefore ''Q'' must also be true." ''Modus ponens'' is closely related to another Validity (logic), valid form of argument, ''modus tollens''. Both have apparently similar but invalid forms such as affirming the consequent, denying the antecedent, and evidence of absence. Constructive dilemma is the Logical disjunction, disjunctive version of ''modus ponens''. Hypothetical syllogism is closely related to ''modus ponens'' and sometimes thought of as "double ''modus ponens''." The history of ''modus ponens'' goes back to Classical antiquity, antiquity. The first to explicitly describe the argument for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Translation
Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English language draws a terminology, terminological distinction (which does not exist in every language) between ''translating'' (a written text) and ''Language interpretation, interpreting'' (oral or Sign language, signed communication between users of different languages); under this distinction, translation can begin only after the appearance of writing within a language community. A translator always risks inadvertently introducing source-language words, grammar, or syntax into the target-language rendering. On the other hand, such "spill-overs" have sometimes imported useful source-language calques and loanwords that have enriched target languages. Translators, including early translators of sacred texts, have helped shape the very l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formal Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises in a topic-neutral way. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Formal logic contrasts with informal logic, which is associated with informal fallacies, critical thinking, and argumentation theory. While there is no general agreement on how formal and informal logic are to be distinguished, one prominent approach associates their difference with whether the studied arguments are expressed in formal or informal languages. Logic plays a central role in multiple fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises together with a conclusion. Premises and conclusions are usually under ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Language
In neuropsychology, linguistics, and philosophy of language, a natural language or ordinary language is any language that has evolved naturally in humans through use and repetition without conscious planning or premeditation. Natural languages can take different forms, such as speech or signing. They are distinguished from constructed and formal languages such as those used to program computers or to study logic. Defining natural language Natural language can be broadly defined as different from * artificial and constructed languages, e.g. computer programming languages * constructed international auxiliary languages * non-human communication systems in nature such as whale and other marine mammal vocalizations or honey bees' waggle dance. All varieties of world languages are natural languages, including those that are associated with linguistic prescriptivism or language regulation. ( Nonstandard dialects can be viewed as a wild type in comparison with standard l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Translation
Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English language draws a terminology, terminological distinction (which does not exist in every language) between ''translating'' (a written text) and ''Language interpretation, interpreting'' (oral or Sign language, signed communication between users of different languages); under this distinction, translation can begin only after the appearance of writing within a language community. A translator always risks inadvertently introducing source-language words, grammar, or syntax into the target-language rendering. On the other hand, such "spill-overs" have sometimes imported useful source-language calques and loanwords that have enriched target languages. Translators, including early translators of sacred texts, have helped shape the very l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paraphrase
A paraphrase () is a restatement of the meaning of a text or passage using other words. The term itself is derived via Latin ', . The act of paraphrasing is also called ''paraphrasis''. History Although paraphrases likely abounded in oral traditions, paraphrasing as a specific educational exercise dates back to at least Roman times, when the author Quintilian recommended it for students to develop dexterity in language. In the Middle Ages, this tradition continued, with authors such as Geoffrey of Vinsauf developing schoolroom exercises that included both rhetorical manipulations and paraphrasing as a way of generating poems and speeches. Paraphrasing seems to have dropped off as a specific exercise that students learn, a drop off that largely coincides with the removal of Classical texts from the core of Western education. There is, however, renewed interest in the study of paraphrases, given concerns around plagiarism and original authorship. Analysis A paraphrase typicall ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Truth Condition
In semantics and pragmatics, a truth condition is the condition under which a sentence is true. For example, "It is snowing in Nebraska" is true precisely when it is snowing in Nebraska. Truth conditions of a sentence do not necessarily reflect current reality. They are merely the conditions under which the statement would be true. More formally, a truth condition makes for the truth of a sentence in an inductive definition of truth (for details, see the semantic theory of truth). Understood this way, truth conditions are theoretical entities. To illustrate with an example: suppose that, in a particular truth theoryField, H. (1972). Tarski's Theory of Truth. ''The Journal of Philosophy,'' ''69''(13), 347-375. which is a theory of truth where truth is somehow made acceptable despite semantic terms as close as possible, the word "Nixon" refers to Richard M. Nixon, and "is alive" is associated with the set of currently living things. Then one way of representing the truth conditio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |