HOME
*





Load–store Unit
In computer engineering, a load–store unit (LSU) is a specialized execution unit responsible for executing all load and store instructions, generating virtual addresses of load and store operations and loading data from memory or storing it back to memory from registers.''Memory Systems: Cache, DRAM, Disk'' by Bruce Jacob, Spencer Ng, David Wang 2007 page 298 The load–store unit usually includes a queue which acts as a waiting area for memory instructions, and the unit itself operates independently of other processor units. Load–store units may also be used in vector processing, and in such cases the term "load–store vector" may be used.''Computer Architecture: A Quantitative Approach'' by John L. Hennessy, David A. Patterson 2011 pages 293-295 Some load–store units are also capable of executing simple fixed-point and/or integer operations. See also * Address generation unit * Arithmetic–logic unit * Floating-point unit * Load–store architecture In computer engi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Engineering
Computer engineering (CoE or CpE) is a branch of electrical engineering and computer science that integrates several fields of computer science and electronic engineering required to develop computer hardware and software. Computer engineers not only require training in electronic engineering, software design, and hardware-software integration, but also in software engineering. It uses the techniques and principles of electrical engineering and computer science, but also covers areas such as artificial intelligence (AI), robotics, computer networks, computer architecture and operating systems. Computer engineers are involved in many hardware and software aspects of computing, from the design of individual microcontrollers, microprocessors, personal computers, and supercomputers, to circuit design. This field of engineering not only focuses on how computer systems themselves work, yet it also demands them to integrate into the larger picture. Robots are one of the applicatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Execution Unit
In computer engineering, an execution unit (E-unit or EU) is a part of the central processing unit (CPU) that performs the operations and calculations as instructed by the computer program. It may have its own internal control sequence unit (not to be confused with the CPU's main control unit), some registers, and other internal units such as an arithmetic logic unit (ALU), address generation unit (AGU), floating-point unit (FPU), load-store unit (LSU), branch execution unit (BEU) or some smaller and more specific components."Execution Unit" discussion from the University of Massachusetts Amherst
archived on the

picture info

Computer Memory
In computing, memory is a device or system that is used to store information for immediate use in a computer or related computer hardware and digital electronic devices. The term ''memory'' is often synonymous with the term ''primary storage'' or '' main memory''. An archaic synonym for memory is store. Computer memory operates at a high speed compared to storage that is slower but less expensive and higher in capacity. Besides storing opened programs, computer memory serves as disk cache and write buffer to improve both reading and writing performance. Operating systems borrow RAM capacity for caching so long as not needed by running software. If needed, contents of the computer memory can be transferred to storage; a common way of doing this is through a memory management technique called ''virtual memory''. Modern memory is implemented as semiconductor memory, where data is stored within memory cells built from MOS transistors and other components on an integrated c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Register (computing)
A processor register is a quickly accessible location available to a computer's Processor (computing), processor. Registers usually consist of a small amount of fast Computer storage, storage, although some registers have specific hardware functions, and may be read-only or write-only. In computer architecture, registers are typically addressed by mechanisms other than main memory, but may in some cases be assigned a memory address e.g. DEC PDP-10, ICT 1900 series, ICT 1900. Almost all computers, whether load/store architecture or not, load data from a larger memory into registers where it is used for arithmetic operations and is manipulated or tested by machine instructions. Manipulated data is then often stored back to main memory, either by the same instruction or by a subsequent one. Modern processors use either Static random-access memory, static or Dynamic random-access memory, dynamic Random-access memory, RAM as main memory, with the latter usually accessed via one or more ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Processing
In computing, a vector processor or array processor is a central processing unit (CPU) that implements an instruction set where its instructions are designed to operate efficiently and effectively on large one-dimensional arrays of data called ''vectors''. This is in contrast to scalar processors, whose instructions operate on single data items only, and in contrast to some of those same scalar processors having additional single instruction, multiple data (SIMD) or SWAR Arithmetic Units. Vector processors can greatly improve performance on certain workloads, notably numerical simulation and similar tasks. Vector processing techniques also operate in video-game console hardware and in graphics accelerators. Vector machines appeared in the early 1970s and dominated supercomputer design through the 1970s into the 1990s, notably the various Cray platforms. The rapid fall in the price-to-performance ratio of conventional microprocessor designs led to a decline in vector supercomput ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Address Generation Unit
The address generation unit (AGU), sometimes also called address computation unit (ACU), is an execution unit inside central processing units (CPUs) that calculates addresses used by the CPU to access main memory. By having address calculations handled by separate circuitry that operates in parallel with the rest of the CPU, the number of CPU cycles required for executing various machine instructions can be reduced, bringing performance improvements. While performing various operations, CPUs need to calculate memory addresses required for fetching data from the memory; for example, in-memory positions of array elements must be calculated before the CPU can fetch the data from actual memory locations. Those address-generation calculations involve different integer arithmetic operations, such as addition, subtraction, modulo operations, or bit shifts. Often, calculating a memory address involves more than one general-purpose machine instruction, which do not necessarily deco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arithmetic–logic Unit
In computing, an arithmetic logic unit (ALU) is a combinational digital circuit that performs arithmetic and bitwise operations on integer binary numbers. This is in contrast to a floating-point unit (FPU), which operates on floating point numbers. It is a fundamental building block of many types of computing circuits, including the central processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs). The inputs to an ALU are the data to be operated on, called operands, and a code indicating the operation to be performed; the ALU's output is the result of the performed operation. In many designs, the ALU also has status inputs or outputs, or both, which convey information about a previous operation or the current operation, respectively, between the ALU and external status registers. Signals An ALU has a variety of input and output nets, which are the electrical conductors used to convey digital signals between the ALU and external circuitry. When an ALU is o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Floating-point Unit
In computing, floating-point arithmetic (FP) is arithmetic that represents real numbers approximately, using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. For example, 12.345 can be represented as a base-ten floating-point number: 12.345 = \underbrace_\text \times \underbrace_\text\!\!\!\!\!\!^ In practice, most floating-point systems use base two, though base ten (decimal floating point) is also common. The term ''floating point'' refers to the fact that the number's radix point can "float" anywhere to the left, right, or between the significant digits of the number. This position is indicated by the exponent, so floating point can be considered a form of scientific notation. A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-poi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Load–store Architecture
In computer engineering, a load–store architecture is an instruction set architecture that divides instructions into two categories: memory access ( load and store between memory and registers) and ALU operations (which only occur between registers). Some RISC architectures such as PowerPC, SPARC, RISC-V, ARM, and MIPS are load–store architectures. For instance, in a load–store approach both operands and destination for an ADD operation must be in registers. This differs from a register-memory architecture (for example, a CISC instruction set architecture such as x86) in which one of the operands for the ADD operation may be in memory, while the other is in a register. The earliest example of a load–store architecture was the CDC 6600. Almost all vector processors (including many GPUs) use the load–store approach. See also * Load–store unit In computer engineering, a load–store unit (LSU) is a specialized execution unit responsible for executing all load an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]