HOME
*





List Of VIA C7 Microprocessors
The C7 microprocessor from VIA Technologies is a seventh-generation CPU targeted at the consumer and embedded market. Desktop processors C7 "Esther" (90 nm) * All models support: '' MMX, SSE, SSE2, SSE3, NX bit, VIA PadLock (SHA, AES, Montgomery Multiplier, RNG)'' * VIA PowerSaver supported with 2 ACPI P-states C7-D "Esther" (90 nm) * All models support: '' MMX, SSE, SSE2, SSE3, NX bit, VIA PadLock (SHA, AES, Montgomery Multiplier, RNG)'' * VIA PowerSaver supported on Model D 1.8 and 2.0 with 2 ACPI P-states Mobile processors C7-M "Esther" (standard-voltage, 90 nm) * All models support: '' MMX, SSE, SSE2, SSE3, NX bit, VIA PadLock (SHA, AES, Montgomery Multiplier, RNG)'' * VIA PowerSaver supported with up to 8 ACPI P-states "Esther" (ultra-low-voltage, 90 nm) * All models support: '' MMX, SSE, SSE2, SSE3, NX bit, VIA PadLock (SHA, AES, Montgomery Multiplier, RNG)'' * VIA PowerSaver supported with up to 8 ACPI P-states External links VIA C7 produ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


VIA C7
The VIA C7 is an x86 central processing unit designed by Centaur Technology and sold by VIA Technologies. Product history The C7 delivers a number of improvements to the older VIA C3 cores but is nearly identical to the latest VIA C3 Nehemiah core. The C7 was officially launched in May 2005, although according to market reports, full volume production was not in place at that date. In May 2006 Intel's cross-licensing agreement with VIA expired and was not renewed, which was the reason for the forced termination of C3 shipments on March 31, 2006, as VIA lost rights to the socket 370. The C7 appears still to be found in the marketplace, for example, on the bargain-priced Everex TC2502, sold by Walmart with a Linux distribution preinstalled and on the HP Mini-Note. A 1 GHz C7 processor with 128kB of cache memory is used in VIA's own PX10000G motherboard which is based on the proprietary Pico-ITX form factor. The chip is cooled by a large heatsink that covers most of the boa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

VIA Technologies
VIA Technologies Inc. (), is a Taiwanese manufacturer of integrated circuits, mainly motherboard chipsets, CPUs, and memory. It was the world's largest independent manufacturer of motherboard chipsets. As a fabless semiconductor company, VIA conducts research and development of its chipsets in-house, then subcontracts the actual (silicon) manufacturing to third-party merchant foundries such as TSMC. History The company was founded in 1987, in Fremont, California, USA by Cher Wang. In 1992, it was decided to move the headquarters to Taipei, Taiwan in order to establish closer partnerships with the substantial and growing IT manufacturing base in Taiwan and neighbouring China. In 1999, VIA acquired most of Cyrix, then a division of National Semiconductor. That same year, VIA acquired Centaur Technology from Integrated Device Technology, marking its entry into the x86 microprocessor market. VIA is the maker of the VIA C3, VIA C7 & VIA Nano processors, and the EPIA platform. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MMX (instruction Set)
MMX is a ''single instruction, multiple data'' (SIMD) instruction set architecture designed by Intel, introduced on January 8, 1997 with its Pentium P5 (microarchitecture) based line of microprocessors, named "Pentium with MMX Technology". It developed out of a similar unit introduced on the Intel i860, and earlier the Intel i750 video pixel processor. MMX is a processor supplementary capability that is supported on IA-32 processors by Intel and other vendors . The New York Times described the initial push, including Super Bowl advertisements, as focused on "a new generation of glitzy multimedia products, including videophones and 3-D video games." MMX has subsequently been extended by several programs by Intel and others: 3DNow!, Streaming SIMD Extensions (SSE), and ongoing revisions of Advanced Vector Extensions (AVX). Overview Naming MMX is officially a meaningless initialism trademarked by Intel; unofficially, the initials have been variously explained as standing for * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Streaming SIMD Extensions
In computing, Streaming SIMD Extensions (SSE) is a single instruction, multiple data (SIMD) instruction set extension to the x86 architecture, designed by Intel and introduced in 1999 in their Pentium III series of Central processing units (CPUs) shortly after the appearance of Advanced Micro Devices (AMD's) 3DNow!. SSE contains 70 new instructions (65 unique mnemonics using 70 encodings), most of which work on single precision floating-point data. SIMD instructions can greatly increase performance when exactly the same operations are to be performed on multiple data objects. Typical applications are digital signal processing and graphics processing. Intel's first IA-32 SIMD effort was the MMX instruction set. MMX had two main problems: it re-used existing x87 floating-point registers making the CPUs unable to work on both floating-point and SIMD data at the same time, and it only worked on integers. SSE floating-point instructions operate on a new independent register set, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SSE2
SSE2 (Streaming SIMD Extensions 2) is one of the Intel SIMD (Single Instruction, Multiple Data) processor supplementary instruction sets first introduced by Intel with the initial version of the Pentium 4 in 2000. It extends the earlier Streaming SIMD Extensions, SSE instruction set, and is intended to fully replace MMX (instruction set), MMX. Intel extended SSE2 to create SSE3 in 2004. SSE2 added 144 new instructions to SSE, which has 70 instructions. Competing chip-maker AMD added support for SSE2 with the introduction of their Opteron and Athlon 64 ranges of x86-64, AMD64 64-bit CPUs in 2003. Features Most of the SSE2 instructions implement the integer vector operations also found in MMX. Instead of the MMX registers they use the XMM registers, which are wider and allow for significant performance improvements in specialized applications. Another advantage of replacing MMX with SSE2 is avoiding the mode switching penalty for issuing x87 instructions present in MMX because it i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SSE3
SSE3, Streaming SIMD Extensions 3, also known by its Intel code name Prescott New Instructions (PNI), is the third iteration of the SSE instruction set for the IA-32 (x86) architecture. Intel introduced SSE3 in early 2004 with the Prescott revision of their Pentium 4 CPU. In April 2005, AMD introduced a subset of SSE3 in revision E (Venice and San Diego) of their Athlon 64 CPUs. The earlier SIMD instruction sets on the x86 platform, from oldest to newest, are MMX, 3DNow! (developed by AMD, but not supported by Intel processors), SSE, and SSE2. SSE3 contains 13 new instructions over SSE2. Changes The most notable change is the capability to work horizontally in a register, as opposed to the more or less strictly vertical operation of all previous SSE instructions. More specifically, instructions to add and subtract the multiple values stored within a single register have been added. These instructions can be used to speed up the implementation of a number of DSP and 3D operati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NX Bit
The NX bit (no-execute) is a technology used in CPUs to segregate areas of memory for use by either storage of processor instructions or for storage of data, a feature normally only found in Harvard architecture processors. However, the NX bit is being increasingly used in conventional von Neumann architecture processors for security reasons. An operating system with support for the NX bit may mark certain areas of memory as non-executable. The processor will then refuse to execute any code residing in these areas of memory. The general technique, known as executable space protection, also called Write XOR Execute, is used to prevent certain types of malicious software from taking over computers by inserting their code into another program's data storage area and running their own code from within this section; one class of such attacks is known as the buffer overflow attack. The term NX bit originated with Advanced Micro Devices (AMD), as a marketing term. Intel markets the feat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PowerSaver
VIA LongHaul is a CPU speed throttling and power saving technology developed by VIA Technologies. By executing specialized instructions, software can exercise fine control on the bus-to-core frequency ratio and CPU core voltage. When the system first boots, the ratio and voltage are set to hardware defaults. While the operating system runs, a ''CPU driver'' controls the throttling according to how much load is put on the CPU. This fine control over the CPU's operating parameters brings LongHaul in contrast to other competing technologies, where a CPU is typically allowed to switch between only two states - one that is fast but power-consuming and one that is slow but uses less power. However LongHaul is considered similar to Transmeta's LongRun technology. There are 3 versions of LongHaul: * Version 1 only supports dynamic frequency scaling and is implemented in the Cyrix III Samuel (C5A) core and C3 Samuel 2 (C5B) stepping 0 core. * Version 2 adds voltage scaling and is imp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Advanced Configuration And Power Interface
Advanced Configuration and Power Interface (ACPI) is an open standard that operating systems can use to discover and configure computer hardware components, to perform power management (e.g. putting unused hardware components to sleep), auto configuration (e.g. Plug and Play and hot swapping), and status monitoring. First released in December 1996, ACPI aims to replace Advanced Power Management (APM), the MultiProcessor Specification, and the Plug and Play BIOS (PnP) Specification. ACPI brings power management under the control of the operating system, as opposed to the previous BIOS-centric system that relied on platform-specific firmware to determine power management and configuration policies. The specification is central to the Operating System-directed configuration and Power Management (OSPM) system. ACPI defines hardware abstraction interfaces between the device's firmware (e.g. BIOS, UEFI), the computer hardware components, and the operating systems. Internally, ACPI ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CPU Caches
A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, located closer to a processor core, which stores copies of the data from frequently used main memory locations. Most CPUs have a hierarchy of multiple cache levels (L1, L2, often L3, and rarely even L4), with different instruction-specific and data-specific caches at level 1. The cache memory is typically implemented with static random-access memory (SRAM), in modern CPUs by far the largest part of them by chip area, but SRAM is not always used for all levels (of I- or D-cache), or even any level, sometimes some latter or all levels are implemented with eDRAM. Other types of caches exist (that are not counted towards the "cache size" of the most important caches mentioned above), such as the translation lookaside buffer (TLB) which is part of the memory management unit (MMU) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Front Side Bus
A front-side bus (FSB) is a computer communication interface (bus) that was often used in Intel-chip-based computers during the 1990s and 2000s. The EV6 bus served the same function for competing AMD CPUs. Both typically carry data between the central processing unit (CPU) and a memory controller hub, known as the northbridge. Depending on the implementation, some computers may also have a back-side bus that connects the CPU to the cache. This bus and the cache connected to it are faster than accessing the system memory (or RAM) via the front-side bus. The speed of the front side bus is often used as an important measure of the performance of a computer. The original front-side bus architecture has been replaced by HyperTransport, Intel QuickPath Interconnect or Direct Media Interface in modern volume CPUs. History The term came into use by Intel Corporation about the time the Pentium Pro and Pentium II products were announced, in the 1990s. "Front side" refers to the extern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CPU Multiplier
In computing, the clock multiplier (or CPU multiplier or bus/core ratio) sets the ratio of an internal CPU clock rate to the externally supplied clock. A CPU with a 10x multiplier will thus see 10 internal cycles (produced by PLL-based frequency multiplier circuitry) for every external clock cycle. For example, a system with an external clock of 100 MHz and a 36x clock multiplier will have an internal CPU clock of 3.6 GHz. The external address and data buses of the CPU (often collectively termed front side bus (FSB) in PC contexts) also use the external clock as a fundamental timing base; however, they could also employ a (small) multiple of this base frequency (typically two or four) to transfer data faster. The internal frequency of microprocessors is usually based on FSB frequency. To calculate internal frequency the CPU multiplies bus frequency by a number called the clock multiplier. For calculation, the CPU uses actual bus frequency, and not effective bus frequen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]