HOME
*





List Of Integration And Measure Theory Topics
{{TOCright This is a list of integration and measure theory topics, by Wikipedia page. Intuitive foundations *Length *Area *Volume *Probability *Moving average Riemann integral *Riemann sum *Riemann–Stieltjes integral *Bounded variation * Jordan content Improper integrals *Cauchy principal value Measure theory and the Lebesgue integral *Measure (mathematics) **Sigma algebra ***Separable sigma algebra **Filtration (abstract algebra) *Borel algebra *Borel measure *Indicator function *Lebesgue measure *Lebesgue integration *Lebesgue's density theorem *Counting measure *Complete measure *Haar measure *Outer measure *Borel regular measure *Radon measure *Measurable function *Null set, negligible set *Almost everywhere, conull set *Lp space *Borel–Cantelli lemma *Lebesgue's monotone convergence theorem *Fatou's lemma *Absolutely continuous * Uniform absolute continuity *Total variation *Radon–Nikodym theorem *Fubini's theorem **Double integral *Vitali set, non-measurable set Ext ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Length
Length is a measure of distance. In the International System of Quantities, length is a quantity with dimension distance. In most systems of measurement a base unit for length is chosen, from which all other units are derived. In the International System of Units (SI) system the base unit for length is the metre. Length is commonly understood to mean the most extended dimension of a fixed object. However, this is not always the case and may depend on the position the object is in. Various terms for the length of a fixed object are used, and these include height, which is vertical length or vertical extent, and width, breadth or depth. Height is used when there is a base from which vertical measurements can be taken. Width or breadth usually refer to a shorter dimension when length is the longest one. Depth is used for the third dimension of a three dimensional object. Length is the measure of one spatial dimension, whereas area is a measure of two dimensions (length square ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Algebra
In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel. For a topological space ''X'', the collection of all Borel sets on ''X'' forms a σ-algebra, known as the Borel algebra or Borel σ-algebra. The Borel algebra on ''X'' is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets). Borel sets are important in measure theory, since any measure defined on the open sets of a space, or on the closed sets of a space, must also be defined on all Borel sets of that space. Any measure defined on the Borel sets is called a Borel measure. Borel sets and the associated Borel hierarchy also play a fundamental role in descriptive set theory. In some contexts, Borel sets are defined to be generated by the compact sets of the topological space, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Null Set
In mathematical analysis, a null set N \subset \mathbb is a measurable set that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length. The notion of null set should not be confused with the empty set as defined in set theory. Although the empty set has Lebesgue measure zero, there are also non-empty sets which are null. For example, any non-empty countable set of real numbers has Lebesgue measure zero and therefore is null. More generally, on a given measure space M = (X, \Sigma, \mu) a null set is a set S\in\Sigma such that \mu(S) = 0. Example Every finite or countably infinite subset of the real numbers is a null set. For example, the set of natural numbers and the set of rational numbers are both countably infinite and therefore are null sets when considered as subsets of the real numbers. The Cantor set is an example of an uncountable null set. Definition Suppose A is a subset ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Measurable Function
In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable. Formal definition Let (X,\Sigma) and (Y,\Tau) be measurable spaces, meaning that X and Y are sets equipped with respective \sigma-algebras \Sigma and \Tau. A function f:X\to Y is said to be measurable if for every E\in \Tau the pre-image of E under f is in \Sigma; that is, for all E \in \Tau f^(E) := \ \in \Sigma. That is, \sigma (f)\subseteq\Sigma, where \sigma (f) is the σ-algebra gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radon Measure
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space ''X'' that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures. Motivation A common problem is to find a good notion of a measure on a topological space that is compatible with the topology in some sense. One way to do this is to define a measure on the Borel sets of the topological space. In general there are several problems with this: for example, such a measure may not have a well defined support. Another approach to measure theory is to restrict to locally compact Hausdorff spaces, and only consider the measures that correspond to positive linear functionals on the space of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Regular Measure
Borel may refer to: People * Borel (author), 18th-century French playwright * Borel (1906–1967), pseudonym of the French actor Jacques Henri Cottance * Émile Borel (1871 – 1956), a French mathematician known for his founding work in the areas of measure theory and probability * Armand Borel (1923 – 2003), a Swiss mathematician * Mary Grace Borel (1915 – 1998), American socialite Places * Borel (crater), a lunar crater, named after Émile Borel Mathematics * Borel algebra, operating on Borel sets, named after Émile Borel, also: ** Borel measure, the measure on a Borel algebra * Borel distribution, a discrete probability distribution, also named after Émile Borel * Borel subgroup, in the theory of algebraic groups, named after Armand Borel Other uses * Borel (surname), a surname * Etablissements Borel, an aircraft manufacturing company founded by Gabriel Borel See also * Borrel *Borrell Borrell () is a common surname in modern Catalan language, and was also a given nam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Outer Measure
In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer measures was first introduced by Constantin Carathéodory to provide an abstract basis for the theory of measurable sets and countably additive measures. Carathéodory's work on outer measures found many applications in measure-theoretic set theory (outer measures are for example used in the proof of the fundamental Carathéodory's extension theorem), and was used in an essential way by Hausdorff to define a dimension-like metric invariant now called Hausdorff dimension. Outer measures are commonly used in the field of geometric measure theory. Measures are generalizations of length, area and volume, but are useful for much more abstract and irregular sets than intervals in \mathbb or balls in \mathbb^. One might expect to define a generaliz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Haar Measure
In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups. This measure was introduced by Alfréd Haar in 1933, though its special case for Lie groups had been introduced by Adolf Hurwitz in 1897 under the name "invariant integral". Haar measures are used in many parts of analysis, number theory, group theory, representation theory, statistics, probability theory, and ergodic theory. Preliminaries Let (G, \cdot) be a locally compact Hausdorff topological group. The \sigma-algebra generated by all open subsets of G is called the Borel algebra. An element of the Borel algebra is called a Borel set. If g is an element of G and S is a subset of G, then we define the left and right translates of S by ''g'' as follows: * Left translate: g S = \. * Right translate: S g = \. Left and right translates map Borel sets onto Borel sets. A measure \mu on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Measure
In mathematics, a complete measure (or, more precisely, a complete measure space) is a measure space in which every subset of every null set is measurable (having measure zero). More formally, a measure space (''X'', Σ, ''μ'') is complete if and only if :S \subseteq N \in \Sigma \mbox \mu(N) = 0\ \Rightarrow\ S \in \Sigma. Motivation The need to consider questions of completeness can be illustrated by considering the problem of product spaces. Suppose that we have already constructed Lebesgue measure on the real line: denote this measure space by (\R, B, \lambda). We now wish to construct some two-dimensional Lebesgue measure \lambda^2 on the plane \R^2 as a product measure. Naively, we would take the -algebra on \R^2 to be B \otimes B, the smallest -algebra containing all measurable "rectangles" A_1 \times A_2 for A_1, A_2 \in B. While this approach does define a measure space, it has a flaw. Since every singleton set has one-dimensional Lebesgue measure zero, \lam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Counting Measure
In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinity \infty if the subset is infinite. The counting measure can be defined on any measurable space (that is, any set X along with a sigma-algebra) but is mostly used on countable sets. In formal notation, we can turn any set X into a measurable space by taking the power set of X as the sigma-algebra \Sigma; that is, all subsets of X are measurable sets. Then the counting measure \mu on this measurable space (X,\Sigma) is the positive measure \Sigma \to ,+\infty/math> defined by \mu(A) = \begin \vert A \vert & \text A \text\\ +\infty & \text A \text \end for all A\in\Sigma, where \vert A\vert denotes the cardinality of the set A. The counting measure on (X,\Sigma) is σ-finite if and only if the space X is countable In mathematics, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lebesgue's Density Theorem
In mathematics, Lebesgue's density theorem states that for any Lebesgue measurable set A\subset \R^n, the "density" of ''A'' is 0 or 1 at almost every point in \R^n. Additionally, the "density" of ''A'' is 1 at almost every point in ''A''. Intuitively, this means that the "edge" of ''A'', the set of points in ''A'' whose "neighborhood" is partially in ''A'' and partially outside of ''A'', is negligible. Let μ be the Lebesgue measure on the Euclidean space R''n'' and ''A'' be a Lebesgue measurable subset of R''n''. Define the approximate density of ''A'' in a ε-neighborhood of a point ''x'' in R''n'' as : d_\varepsilon(x)=\frac where ''B''ε denotes the closed ball of radius ε centered at ''x''. Lebesgue's density theorem asserts that for almost every point ''x'' of ''A'' the density : d(x)=\lim_ d_(x) exists and is equal to 0 or 1. In other words, for every measurable set ''A'', the density of ''A'' is 0 or 1 almost everywhere in R''n''. However, if μ(''A'') >&nb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lebesgue Integration
In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the -axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, extends the integral to a larger class of functions. It also extends the domains on which these functions can be defined. Long before the 20th century, mathematicians already understood that for non-negative functions with a smooth enough graph—such as continuous functions on closed bounded intervals—the ''area under the curve'' could be defined as the integral, and computed using approximation techniques on the region by polygons. However, as the need to consider more irregular functions arose—e.g., as a result of the limiting processes of mathematical analysis and the mathematical theory of probability—it became clear that more careful approximation techniques were needed to define a suitable integral. Also, one might ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]