Lipschitz-continuous
   HOME
*



picture info

Lipschitz-continuous
In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the ''Lipschitz constant'' of the function (or '' modulus of uniform continuity''). For instance, every function that has bounded first derivatives is Lipschitz continuous. In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, called contraction, is used in the Banach fixed-point theorem. We have the following chain of strict inclus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Absolutely Continuous
In calculus, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus— differentiation and integration. This relationship is commonly characterized (by the fundamental theorem of calculus) in the framework of Riemann integration, but with absolute continuity it may be formulated in terms of Lebesgue integration. For real-valued functions on the real line, two interrelated notions appear: absolute continuity of functions and absolute continuity of measures. These two notions are generalized in different directions. The usual derivative of a function is related to the '' Radon–Nikodym derivative'', or ''density'', of a measure. We have the following chains of inclusions for functions over a compact subset of the real line: : ''absolutely continuous'' ⊆ ''uniformly continuous'' = ''cont ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rudolf Lipschitz
Rudolf Otto Sigismund Lipschitz (14 May 1832 – 7 October 1903) was a German mathematician who made contributions to mathematical analysis (where he gave his name to the Lipschitz continuity condition) and differential geometry, as well as number theory, algebras with involution and classical mechanics. Biography Rudolf Lipschitz was born on 14 May 1832 in Königsberg. He was the son of a landowner and was raised at his father's estate at Bönkein which was near Königsberg. He entered the University of Königsberg when he was 15, but later moved to the University of Berlin where he studied with Gustav Dirichlet. Despite having his studies delayed by illness, in 1853 Lipschitz graduated with a PhD in Berlin. After receiving his PhD, Lipschitz started teaching at local Gymnasiums. In 1857 he married Ida Pascha, the daughter of one of the landowners with an estate near to his father's. In 1857 he earned his habilitation at the University of Bonn and remained there as a privatdoze ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Picard–Lindelöf Theorem
In mathematics – specifically, in differential equations – the Picard–Lindelöf theorem gives a set of conditions under which an initial value problem has a unique solution. It is also known as Picard's existence theorem, the Cauchy–Lipschitz theorem, or the existence and uniqueness theorem. The theorem is named after Émile Picard, Ernst Lindelöf, Rudolf Lipschitz and Augustin-Louis Cauchy. Theorem Let D \subseteq \R \times \R^nbe a closed rectangle with (t_0, y_0) \in D. Let f: D \to \R^n be a function that is continuous in t and Lipschitz continuous in y. Then, there exists some such that the initial value problem y'(t)=f(t,y(t)),\qquad y(t_0)=y_0. has a unique solution y(t) on the interval _0-\varepsilon, t_0+\varepsilon/math>. Note that D is often instead required to be open but even under such an assumption, the proof only uses a closed rectangle within D. Proof sketch The proof relies on transforming the differential equation, and applying ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lipschitz Visualisierung
Lipschitz, Lipshitz, or Lipchitz, is an Ashkenazi Jewish (Yiddish/German-Jewish) surname. The surname has many variants, including: Lifshitz (Lifschitz), Lifshits, Lifshuts, Lefschetz; Lipschitz, Lipshitz, Lipshits, Lopshits, Lipschutz (Lipschütz), Lipshutz, Lüpschütz; Libschitz; Livshits; Lifszyc, Lipszyc. It is commonly Anglicized as Lipton (surname), Lipton, and less commonly as Lipington. There are several places in Europe from where the name may be derived. In all cases, ''Lip'' or ''Lib'' is derived from the Slavic root ''lipa'' (linden tree, see also Leipzig), and the ''itz'' ending is the Germanisation of the Slavic place name ending ''ice''. In the Czech Republic: *Libčice nad Vltavou (German: Libschitz an der Moldau) *Liběšice u Litoměřic (German: Liebeschitz bei Leitmeritz) *Liběšice u Žatce (German: Libeschitz bei Saaz) In Germany: *Gera-Liebschwitz *Liebschützberg-Liebschütz *Remptendorf-Liebschütz In Poland: *Głubczyce (Silesian German: Lischwit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Injective Function
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of one element of its domain. The term must not be confused with that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain. A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an is also called a . However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see for more details. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hölder Condition
In mathematics, a real or complex-valued function ''f'' on ''d''-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are nonnegative real constants ''C'', α > 0, such that : , f(x) - f(y) , \leq C\, x - y\, ^ for all ''x'' and ''y'' in the domain of ''f''. More generally, the condition can be formulated for functions between any two metric spaces. The number α is called the ''exponent'' of the Hölder condition. A function on an interval satisfying the condition with α > 1 is constant. If α = 1, then the function satisfies a Lipschitz condition. For any α > 0, the condition implies the function is uniformly continuous. The condition is named after Otto Hölder. We have the following chain of strict inclusions for functions over a closed and bounded non-trivial interval of the real line: : Continuously differentiable ⊂ Lipschitz continuous ⊂ α-Hölder continuous ⊂ uniformly continuous ⊂ continuous, where ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Compact
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood. In mathematical analysis locally compact spaces that are Hausdorff are of particular interest; they are abbreviated as LCH spaces. Formal definition Let ''X'' be a topological space. Most commonly ''X'' is called locally compact if every point ''x'' of ''X'' has a compact neighbourhood, i.e., there exists an open set ''U'' and a compact set ''K'', such that x\in U\subseteq K. There are other common definitions: They are all equivalent if ''X'' is a Hausdorff space (or preregular). But they are not equivalent in general: :1. every point of ''X'' has a compact neighbourhood. :2. every point of ''X'' has a closed compact neighbourhood. :2′. every point of ''X'' has a relatively compact neighbourhoo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neighborhood (mathematics)
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior. Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from that point without leaving the set. Definitions Neighbourhood of a point If X is a topological space and p is a point in X, then a of p is a subset V of X that includes an open set U containing p, p \in U \subseteq V \subseteq X. This is also equivalent to the point p \in X belonging to the topological interior of V in X. The neighbourhood V need be an open subset X, but when V is open in X then it is called an . Some authors have been known to require neighbourhoods to be open, so it is important to note conventions. A set that is a neighbourhood of each of its points is open since it can be expressed as the union of open sets ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Real-valued Function
In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain. Real-valued functions of a real variable (commonly called ''real functions'') and real-valued functions of several real variables are the main object of study of calculus and, more generally, real analysis. In particular, many function spaces consist of real-valued functions. Algebraic structure Let (X,) be the set of all functions from a set to real numbers \mathbb R. Because \mathbb R is a field, (X,) may be turned into a vector space and a commutative algebra over the reals with the following operations: *f+g: x \mapsto f(x) + g(x) – vector addition *\mathbf: x \mapsto 0 – additive identity *c f: x \mapsto c f(x),\quad c \in \mathbb R – scalar multiplication *f g: x \mapsto f(x)g(x) – pointwise multiplication These operations extend to partial functions from to \mathbb R, with the restricti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Short Map
In the mathematical theory of metric spaces, a metric map is a function between metric spaces that does not increase any distance (such functions are always continuous). These maps are the morphisms in the category of metric spaces, Met (Isbell 1964). They are also called Lipschitz functions with Lipschitz constant 1, nonexpansive maps, nonexpanding maps, weak contractions, or short maps. Specifically, suppose that ''X'' and ''Y'' are metric spaces and ƒ is a function from ''X'' to ''Y''. Thus we have a metric map when, for any points ''x'' and ''y'' in ''X'', : d_(f(x),f(y)) \leq d_(x,y) . \! Here ''d''''X'' and ''d''''Y'' denote the metrics on ''X'' and ''Y'' respectively. Examples Let us consider the metric space ,1/2/math> with the Euclidean metric. Then the function f(x)=x^2 is a metric map, since for x\ne y, , f(x)-f(y), =, x+y, , x-y, <, x-y, .


Category of metric maps

The