HOME
*



picture info

Linear Temporal Logic
In logic, linear temporal logic or linear-time temporal logic (LTL) is a modal temporal logic with modalities referring to time. In LTL, one can encode formulae about the future of paths, e.g., a condition will eventually be true, a condition will be true until another fact becomes true, etc. It is a fragment of the more complex CTL*, which additionally allows branching time and quantifiers. Subsequently, LTL is sometimes called ''propositional temporal logic'', abbreviated ''PTL''. In terms of expressive power, linear temporal logic (LTL) is a fragment of first-order logic. LTL was first proposed for the formal verification of computer programs by Amir Pnueli in 1977. Syntax LTL is built up from a finite set of propositional variables ''AP'', the logical operators ¬ and ∨, and the temporal modal operators X (some literature uses O or N) and U. Formally, the set of LTL formulas over ''AP'' is inductively defined as follows: * if p ∈ ''AP'' then p is an LTL formula; * if Ï ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises in a topic-neutral way. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Formal logic contrasts with informal logic, which is associated with informal fallacies, critical thinking, and argumentation theory. While there is no general agreement on how formal and informal logic are to be distinguished, one prominent approach associates their difference with whether the studied arguments are expressed in formal or informal languages. Logic plays a central role in multiple fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises together with a conclusion. Premises and conclusions are usually un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kripke Structure
: ''This article describes Kripke structures as used in model checking. For a more general description, see Kripke semantics''. A Kripke structure is a variation of the transition system, originally proposed by Saul Kripke, used in model checking to represent the behavior of a system. It consists of a graph whose nodes represent the reachable states of the system and whose edges represent state transitions, together with a labelling function which maps each node to a set of properties that hold in the corresponding state. Temporal logics are traditionally interpreted in terms of Kripke structures. Formal definition Let be a set of ''atomic propositions'', i.e. boolean expressions over variables, constants and predicate symbols. Clarke et al. define a Kripke structure over as a 4-tuple consisting of * a finite set of states . * a set of initial states . * a transition relation such that is left-total, i.e., such that . * a labeling (or ''interpretation'') function . Since i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Monadic First-order Logic Of Order
In logic, the monadic predicate calculus (also called monadic first-order logic) is the fragment of first-order logic in which all relation symbols in the signature are monadic (that is, they take only one argument), and there are no function symbols. All atomic formulas are thus of the form P(x), where P is a relation symbol and x is a variable. Monadic predicate calculus can be contrasted with polyadic predicate calculus, which allows relation symbols that take two or more arguments. Expressiveness The absence of polyadic relation symbols severely restricts what can be expressed in the monadic predicate calculus. It is so weak that, unlike the full predicate calculus, it is decidable—there is a decision procedure that determines whether a given formula of monadic predicate calculus is logically valid (true for all nonempty domains). Löwenheim, L. (1915) "Über Möglichkeiten im Relativkalkül," ''Mathematische Annalen'' 76: 447-470. Translated as "On possibilities in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Temporal Logic To Büchi Automaton
In formal verification, finite state model checking needs to find a Büchi automaton (BA) equivalent to a given linear temporal logic (LTL) formula, i.e., such that the LTL formula and the BA recognize the same ω-language. There are algorithms that translate an LTL formula to a BA.M.Y. Vardi and P. Wolper, Reasoning about infinite computations, Information and Computation, 115(1994), 1–37.Y. Kesten, Z. Manna, H. McGuire, A. Pnueli, A decision algorithm for full propositional temporal logic, CAV’93, Elounda, Greece, LNCS 697, Springer–Verlag, 97-109.R. Gerth, D. Peled, M.Y. Vardi and P. Wolper, "Simple On-The-Fly Automatic Verification of Linear Temporal Logic," Proc. IFIP/WG6.1 Symp. Protocol Specification, Testing, and Verification (PSTV95), pp. 3-18,Warsaw, Poland, Chapman & Hall, June 1995. P. Gastin and D. Oddoux, Fast LTL to Büchi automata translation, Thirteenth Conference on Computer Aided Verification (CAV ′01), number 2102 in LNCS, Springer-Verlag (2001), pp. 53 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Operator
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary operation ''on a set'' is a binary operation whose two domains and the codomain are the same set. Examples include the familiar arithmetic operations of addition, subtraction, and multiplication. Other examples are readily found in different areas of mathematics, such as vector addition, matrix multiplication, and conjugation in groups. An operation of arity two that involves several sets is sometimes also called a ''binary operation''. For example, scalar multiplication of vector spaces takes a scalar and a vector to produce a vector, and scalar product takes two vectors to produce a scalar. Such binary operations may be called simply binary functions. Binary operations are the keystone of most algebraic structures that are studied ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]