HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of
arity In logic, mathematics, and computer science, arity () is the number of arguments or operands taken by a function, operation or relation. In mathematics, arity may also be called rank, but this word can have many other meanings. In logic and ...
two. More specifically, a binary operation on a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
is a binary function that maps every pair of elements of the set to an element of the set. Examples include the familiar
arithmetic operations Arithmetic is an elementary branch of mathematics that deals with numerical operations like addition, subtraction, multiplication, and Division (mathematics), division. In a wider sense, it also includes exponentiation, extraction of nth root, ...
like
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
,
subtraction Subtraction (which is signified by the minus sign, –) is one of the four Arithmetic#Arithmetic operations, arithmetic operations along with addition, multiplication and Division (mathematics), division. Subtraction is an operation that repre ...
,
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
, set operations like union, complement, intersection. Other examples are readily found in different areas of mathematics, such as
vector addition Vector most often refers to: * Euclidean vector, a quantity with a magnitude and a direction * Disease vector, an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematics a ...
,
matrix multiplication In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix (mathematics), matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the n ...
, and conjugation in groups. A binary function that involves several sets is sometimes also called a ''binary operation''. For example,
scalar multiplication In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector ...
of
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s takes a scalar and a vector to produce a vector, and scalar product takes two vectors to produce a scalar. Binary operations are the keystone of most
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
s that are studied in
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
, in particular in
semigroup In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily th ...
s,
monoid In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity ...
s, groups, rings, fields, and
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s.


Terminology

More precisely, a binary operation on a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
S is a mapping of the elements of the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
S \times S to S: :\,f \colon S \times S \rightarrow S. If f is not a function but a
partial function In mathematics, a partial function from a set to a set is a function from a subset of (possibly the whole itself) to . The subset , that is, the '' domain'' of viewed as a function, is called the domain of definition or natural domain ...
, then f is called a partial binary operation. For instance, division is a partial binary operation on the set of all
real numbers In mathematics, a real number is a number that can be used to measurement, measure a continuous variable, continuous one-dimensional quantity such as a time, duration or temperature. Here, ''continuous'' means that pairs of values can have arbi ...
, because one cannot divide by zero: \frac is undefined for every real number a. In both
model theory In mathematical logic, model theory is the study of the relationship between theory (mathematical logic), formal theories (a collection of Sentence (mathematical logic), sentences in a formal language expressing statements about a Structure (mat ...
and classical
universal algebra Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures in general, not specific types of algebraic structures. For instance, rather than considering groups or rings as the object of stud ...
, binary operations are required to be defined on all elements of S \times S. However, partial algebras generalize
universal algebra Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures in general, not specific types of algebraic structures. For instance, rather than considering groups or rings as the object of stud ...
s to allow partial operations. Sometimes, especially in
computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ...
, the term binary operation is used for any binary function.


Properties and examples

Typical examples of binary operations are the
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
(+) and
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
(\times) of
number A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
s and matrices as well as
composition of functions In mathematics, the composition operator \circ takes two functions, f and g, and returns a new function h(x) := (g \circ f) (x) = g(f(x)). Thus, the function is applied after applying to . (g \circ f) is pronounced "the composition of an ...
on a single set. For instance, * On the set of real numbers \mathbb R, f(a,b)=a+b is a binary operation since the sum of two real numbers is a real number. * On the set of natural numbers \mathbb N, f(a,b)=a+b is a binary operation since the sum of two natural numbers is a natural number. This is a different binary operation than the previous one since the sets are different. * On the set M(2,\mathbb R) of 2 \times 2 matrices with real entries, f(A,B)=A+B is a binary operation since the sum of two such matrices is a 2 \times 2 matrix. * On the set M(2,\mathbb R) of 2 \times 2 matrices with real entries, f(A,B)=AB is a binary operation since the product of two such matrices is a 2 \times 2 matrix. * For a given set C, let S be the set of all functions h \colon C \rightarrow C. Define f \colon S \times S \rightarrow S by f(h_1,h_2)(c)=(h_1 \circ h_2)(c)=h_1(h_2(c)) for all c \in C, the composition of the two functions h_1 and h_2 in S. Then f is a binary operation since the composition of the two functions is again a function on the set C (that is, a member of S). Many binary operations of interest in both algebra and formal logic are
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
, satisfying f(a,b)=f(b,a) for all elements a and b in S, or
associative In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
, satisfying f(f(a,b),c)=f(a,f(b,c)) for all a, b, and c in S. Many also have
identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
s and
inverse element In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
s. The first three examples above are commutative and all of the above examples are associative. On the set of real numbers \mathbb R,
subtraction Subtraction (which is signified by the minus sign, –) is one of the four Arithmetic#Arithmetic operations, arithmetic operations along with addition, multiplication and Division (mathematics), division. Subtraction is an operation that repre ...
, that is, f(a,b)=a-b, is a binary operation which is not commutative since, in general, a-b \neq b-a. It is also not associative, since, in general, a-(b-c) \neq (a-b)-c; for instance, 1-(2-3)=2 but (1-2)-3=-4. On the set of natural numbers \mathbb N, the binary operation
exponentiation In mathematics, exponentiation, denoted , is an operation (mathematics), operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication ...
, f(a,b)=a^b, is not commutative since, a^b \neq b^a (cf. Equation xy = yx), and is also not associative since f(f(a,b),c) \neq f(a,f(b,c)). For instance, with a=2, b=3, and c=2, f(2^3,2)=f(8,2)=8^2=64, but f(2,3^2)=f(2,9)=2^9=512. By changing the set \mathbb N to the set of integers \mathbb Z, this binary operation becomes a partial binary operation since it is now undefined when a=0 and b is any negative integer. For either set, this operation has a ''right identity'' (which is 1) since f(a,1)=a for all a in the set, which is not an ''identity'' (two sided identity) since f(1,b) \neq b in general. Division (\div), a partial binary operation on the set of real or rational numbers, is not commutative or associative.
Tetration In mathematics, tetration (or hyper-4) is an operation (mathematics), operation based on iterated, or repeated, exponentiation. There is no standard mathematical notation, notation for tetration, though Knuth's up arrow notation \uparrow \upa ...
(\uparrow\uparrow), as a binary operation on the natural numbers, is not commutative or associative and has no identity element.


Notation

Binary operations are often written using
infix notation Infix notation is the notation commonly used in arithmetical and logical formulae and statements. It is characterized by the placement of operators between operands—"infixed operators"—such as the plus sign in . Usage Binary relations are ...
such as a \ast b, a+b, a \cdot b or (by
juxtaposition Juxtaposition is an act or instance of placing two opposing elements close together or side by side. This is often done in order to Comparison, compare/contrast the two, to show similarities or differences, etc. Speech Juxtaposition in literary ...
with no symbol) ab rather than by functional notation of the form f(a, b). Powers are usually also written without operator, but with the second argument as
superscript A subscript or superscript is a character (such as a number or letter) that is set slightly below or above the normal line of type, respectively. It is usually smaller than the rest of the text. Subscripts appear at or below the baseline, wh ...
. Binary operations are sometimes written using prefix or (more frequently) postfix notation, both of which dispense with parentheses. They are also called, respectively,
Polish notation Polish notation (PN), also known as normal Polish notation (NPN), Łukasiewicz notation, Warsaw notation, Polish prefix notation, Eastern Notation or simply prefix notation, is a mathematical notation in which Operation (mathematics), operator ...
\ast a b and
reverse Polish notation Reverse Polish notation (RPN), also known as reverse Łukasiewicz notation, Polish postfix notation or simply postfix notation, is a mathematical notation in which operators ''follow'' their operands, in contrast to prefix or Polish notation ...
a b \ast.


Binary operations as ternary relations

A binary operation f on a set S may be viewed as a ternary relation on S, that is, the set of triples (a, b, f(a,b)) in S \times S \times S for all a and b in S.


Other binary operations

For example,
scalar multiplication In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector ...
in
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
. Here K is a field and S is a
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
over that field. Also the
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
of two vectors maps S \times S to K, where K is a field and S is a vector space over K. It depends on authors whether it is considered as a binary operation.


See also

* :Properties of binary operations * * * * * *


Notes


References

* * * *


External links

* {{DEFAULTSORT:Binary Operation