HOME
*





Linear Addressing
Flat memory model or linear memory model refers to a memory addressing paradigm in which "memory appears to the program as a single contiguous address space." The CPU can directly (and linearly) address all of the available memory locations without having to resort to any sort of memory segmentation or paging schemes. Memory management and address translation can still be implemented ''on top of'' a flat memory model in order to facilitate the operating system's functionality, resource protection, multitasking or to increase the memory capacity beyond the limits imposed by the processor's physical address space, but the key feature of a flat memory model is that the entire memory space is linear, sequential and contiguous. In a simple controller, or in a ''single tasking'' embedded application, where memory management is not needed nor desirable, the flat memory model is the most appropriate, because it provides the simplest interface from the programmer's point of view, with d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Memory Address
In computing, a memory address is a reference to a specific memory location used at various levels by software and hardware. Memory addresses are fixed-length sequences of digits conventionally displayed and manipulated as unsigned integers. Such numerical semantic bases itself upon features of CPU (such as the instruction pointer and incremental address registers), as well upon use of the memory like an array endorsed by various programming languages. Types Physical addresses A digital computer's main memory consists of many memory locations. Each memory location has a physical address which is a code. The CPU (or other device) can use the code to access the corresponding memory location. Generally only system software, i.e. the BIOS, operating systems, and some specialized utility programs (e.g., memory testers), address physical memory using machine code operands or processor registers, instructing the CPU to direct a hardware device, called the memory controller, to use the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


X86 Memory Segmentation
x86 memory segmentation refers to the implementation of memory segmentation in the Intel x86 computer instruction set architecture. Segmentation was introduced on the Intel 8086 in 1978 as a way to allow programs to address more than 64 KB (65,536 bytes) of memory. The Intel 80286 introduced a second version of segmentation in 1982 that added support for virtual memory and memory protection. At this point the original mode was renamed to real mode, and the new version was named protected mode. The x86-64 architecture, introduced in 2003, has largely dropped support for segmentation in 64-bit mode. In both real and protected modes, the system uses 16-bit ''segment registers'' to derive the actual memory address. In real mode, the registers CS, DS, SS, and ES point to the currently used program code segment (CS), the current data segment (DS), the current stack segment (SS), and one ''extra'' segment determined by the programmer (ES). The Intel 80386, introduced in 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Address Space
In computing, an address space defines a range of discrete addresses, each of which may correspond to a network host, peripheral device, disk sector, a memory cell or other logical or physical entity. For software programs to save and retrieve stored data, each datum must have an address where it can be located. The number of address spaces available depends on the underlying address structure, which is usually limited by the computer architecture being used. Often an address space in a system with virtual memory corresponds to a highest level translation table, e.g., a segment table in IBM System/370. Address spaces are created by combining enough uniquely identified qualifiers to make an address unambiguous within the address space. For a person's physical address, the ''address space'' would be a combination of locations, such as a neighborhood, town, city, or country. Some elements of a data address space may be the same, but if any element in the address is different, addres ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real Mode
Real mode, also called real address mode, is an operating mode of all x86-compatible CPUs. The mode gets its name from the fact that addresses in real mode always correspond to real locations in memory. Real mode is characterized by a 20-bit segmented memory address space (giving 1 MB of addressable memory) and unlimited direct software access to all addressable memory, I/O addresses and peripheral hardware. Real mode provides no support for memory protection, multitasking, or code privilege levels. Before the release of the 80286, which introduced protected mode, real mode was the only available mode for x86 CPUs; and for backward compatibility, all x86 CPUs start in real mode when reset, though it is possible to emulate real mode on other systems when starting on other modes. History The 286 architecture introduced protected mode, allowing for (among other things) hardware-level memory protection. Using these new features, however, required a new operating system that was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Core 2
Intel Core 2 is the processor family encompassing a range of Intel's consumer 64-bit x86-64 single-, dual-, and quad-core microprocessors based on the Core microarchitecture. The single- and dual-core models are single- die, whereas the quad-core models comprise two dies, each containing two cores, packaged in a multi-chip module. The Core 2 range was the last flagship range of Intel desktop processors to use a front-side bus. The introduction of Core 2 relegated the Pentium brand to the mid-range market, and reunified laptop and desktop CPU lines for marketing purposes under the same product name, which were formerly divided into the Pentium 4, Pentium D, and Pentium M brands. The ''Core 2'' processor line was introduced on July 27, 2006, comprising the ''Duo'' (dual-core) and ''Extreme'' (dual- or quad-core CPUs for enthusiasts), and in 2007, the ''Quad'' (quad-core) and ''Solo'' (single-core) sub-brands. Intel Core 2 processors with vPro technology (designed for businesses) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentium
Pentium is a brand used for a series of x86 architecture-compatible microprocessors produced by Intel. The original Pentium processor from which the brand took its name was first released on March 22, 1993. After that, the Pentium II and Pentium III were released. In their form , Pentium processors are considered entry-level products that Intel rates as "two stars", meaning that they are above the low-end Atom and Celeron series, but below the faster Intel Core lineup, and workstation/server Xeon series. , Pentium processors have little more than their name in common with earlier Pentiums, which were Intel's flagship processor for over a decade until the introduction of the Intel Core line in 2006. They are based on both the architecture used in Atom and that of Core processors. In the case of Atom architectures, Pentiums are the highest performance implementations of the architecture. Pentium processors with Core architectures prior to 2017 were distinguished from the fast ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

80386
The Intel 386, originally released as 80386 and later renamed i386, is a 32-bit microprocessor introduced in 1985. The first versions had 275,000 transistorsmit.edu—The Future of FPGAs
(Cornell) October 11, 2012
and were the CPU of many s and high-end s of the time. As the original implementation of the
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

80286
The Intel 80286 (also marketed as the iAPX 286 and often called Intel 286) is a 16-bit microprocessor that was introduced on February 1, 1982. It was the first 8086-based CPU with separate, non-multiplexed address and data buses and also the first with memory management and wide protection abilities. The 80286 used approximately 134,000 transistors in its original nMOS (HMOS) incarnation and, just like the contemporary 80186, it could correctly execute most software written for the earlier Intel 8086 and 8088 processors. The 80286 was employed for the IBM PC/AT, introduced in 1984, and then widely used in most PC/AT compatible computers until the early 1990s. In 1987, Intel shipped its five-millionth 80286 microprocessor. History and performance Intel's first 80286 chips were specified for a maximum clockrate of 5, 6 or 8 MHz and later releases for 12.5 MHz. AMD and Harris later produced 16 MHz, 20 MHz and 25 MHz parts, respectively. Intersil and F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

80186
The Intel 80186, also known as the iAPX 186, or just 186, is a microprocessor and microcontroller introduced in 1982. It was based on the Intel 8086 and, like it, had a 16-bit external data bus multiplexed with a 20-bit address bus. The 80188 variant, with an 8-bit external data bus was also available. Description The 80186 series was generally intended for embedded systems, as microcontrollers with external memory. Therefore, to reduce the number of integrated circuits required, it included features such as clock generator, interrupt controller, timers, wait state generator, DMA channels, and external chip select lines. The initial clock rate of the 80186 was 6 MHz, but due to more hardware available for the microcode to use, especially for address calculation, many individual instructions completed in fewer clock cycles than on an 8086 at the same clock frequency. For instance, the common ''register+immediate'' addressing mode was significantly faster than on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

8088
The Intel 8088 ("''eighty-eighty-eight''", also called iAPX 88) microprocessor is a variant of the Intel 8086. Introduced on June 1, 1979, the 8088 has an eight-bit external data bus instead of the 16-bit bus of the 8086. The 16-bit registers and the one megabyte address range are unchanged, however. In fact, according to the Intel documentation, the 8086 and 8088 have the same execution unit (EU)—only the bus interface unit (BIU) is different. The original IBM PC is based on the 8088, as are its clones. History and description The 8088 was designed at Intel's laboratory in Haifa Haifa ( he, חֵיפָה ' ; ar, حَيْفَا ') is the third-largest city in Israel—after Jerusalem and Tel Aviv—with a population of in . The city of Haifa forms part of the Haifa metropolitan area, the third-most populous metropol ..., Israel, as were a large number of Intel's processors. The 8088 was targeted at economical systems by allowing the use of an eight-bit data path ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Physical Address Extension
In computing, Physical Address Extension (PAE), sometimes referred to as Page Address Extension, is a memory management feature for the x86 architecture. PAE was first introduced by Intel in the Pentium Pro, and later by AMD in the Athlon processor. It defines a page table hierarchy of three levels (instead of two), with table entries of 64 bits each instead of 32, allowing these CPUs to directly access a physical address space larger than 4 gigabytes (232 bytes). The page table structure used by x86-64 CPUs when operating in long mode further extends the page table hierarchy to four levels, extending the virtual address space, and uses additional physical address bits at all levels of the page table, extending the physical address space. It also uses the topmost bit of the 64-bit page table entry as a no-execute or "NX" bit, indicating that code cannot be executed from the associated page. The NX feature is also available in protected mode when these CPUs are running a 32- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentium Pro
The Pentium Pro is a sixth-generation x86 microprocessor developed and manufactured by Intel and introduced on November 1, 1995. It introduced the P6 microarchitecture (sometimes termed i686) and was originally intended to replace the original Pentium in a full range of applications. While the Pentium and Pentium MMX had 3.1 and 4.5 million transistors, respectively, the Pentium Pro contained 5.5 million transistors. Later, it was reduced to a more narrow role as a server and high-end desktop processor and was used in supercomputers like ASCI Red, the first computer to reach the trillion ''floating point operations per second'' (teraFLOPS) performance mark. The Pentium Pro was capable of both dual- and quad-processor configurations. It only came in one form factor, the relatively large rectangular Socket 8. The Pentium Pro was succeeded by the Pentium II Xeon in 1998. Microarchitecture The lead architect of Pentium Pro was Fred Pollack who was specialized in supe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]