HOME
*





Lepton Number
In particle physics, lepton number (historically also called lepton charge) is a conserved quantum number representing the difference between the number of leptons and the number of antileptons in an elementary particle reaction. Lepton number is an additive quantum number, so its sum is preserved in interactions (as opposed to multiplicative quantum numbers such as parity, where the product is preserved instead). Mathematically, the lepton number ~ L ~ is defined by :~ L = n_\ell - n_ ~, where *~ n_\ell \quad is the number of leptons and *~ n_ \quad is the number of antileptons. Lepton number was introduced in 1953 to explain the absence of reactions such as : in the Cowan–Reines neutrino experiment, which instead observed : This process, inverse beta decay, conserves lepton number, as the incoming antineutrino has lepton number −1, while the outgoing positron (antielectron) also has lepton number −1. Lepton flavor conservation In addi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, but ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quarks cannot exist on their own but form hadrons. Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons. Two baryons, the proton and the neutron, make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Muon Antineutrino
The muon neutrino is an elementary particle which has the symbol () and zero electric charge. Together with the muon it forms the second generation of leptons, hence the name muon neutrino. It was discovered in 1962 by Leon Lederman, Melvin Schwartz and Jack Steinberger. The discovery was rewarded with the 1988 Nobel Prize in Physics. Discovery The muon neutrino or "neutretto" was hypothesized to exist by a number of physicists in the 1940s. The first paper on it may be Shoichi Sakata and Takesi Inoue's two-meson theory of 1942, which also involved two neutrinos. In 1962 Leon M. Lederman, Melvin Schwartz and Jack Steinberger Jack Steinberger (born Hans Jakob Steinberger; May 25, 1921December 12, 2020) was a German-born American physicist noted for his work with neutrinos, the subatomic particles considered to be elementary constituents of matter. He was a recipient ... proved the existence of the muon neutrino in an experiment at the Brookhaven National Laboratory. This ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chiral Anomaly
In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa. Such events are expected to be prohibited according to classical conservation laws, but it is known there must be ways they can be broken, because we have evidence of charge–parity non-conservation ("CP violation"). It is possible that other imbalances have been caused by breaking of a ''chiral law'' of this kind. Many physicists suspect that the fact that the observable universe contains more matter than antimatter is caused by a chiral anomaly. Research into chiral symmetry breaking laws is a major endeavor in particle physics research at this time. Informal introduction The chiral anomaly originally referred to the anomalous decay rate of the neutral pion, as computed in the current algebra of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mu2e
Mu2e, or the Muon-to-Electron Conversion Experiment, is a particle physics experiment at Fermilab in the US. The goal of the experiment is to identify physics beyond the Standard Model, namely, the conversion of muons to electrons without the emission of neutrinos, which occurs in a number of theoretical models. Project co-spokesperson Jim Miller likens this process to neutrino oscillation, but for charged leptons. Observing this process will help to narrow the range of plausible theories. The experiment will be 10,000 times more sensitive than previous muon to electron conversion experiments, and probe energy scales up to 10,000 TeV. Timeline Prior work Physicists have been searching for flavor violation since the 1940s. Flavor violation among neutrinos was proven in 1998 at the Super-Kamiokande experiment in Japan. In 1989, Russian physicists Vladimir Lobashev and Rashid Djilkibaev proposed an experiment to search for lepton flavor violation. The experiment, called MELC ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supersymmetry
In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a ''"selectron"'' (superpartner electron), a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly " unbroken" supersymmetry, each pair of superpartners would share the same mass and in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mu To E Gamma
The Mu to E Gamma (MEG) is a particle physics experiment dedicated to measuring the decay of the muon into an electron and a photon, a decay mode which is heavily suppressed in the Standard Model by lepton flavour conservation, but enhanced in supersymmetry and grand unified theories. It is located at the Paul Scherrer Institute and began taking data September 2008. Results In May 2016 the MEG experiment published the world's leading upper limit on the branching ratio of this decay: :\Beta ( \mu^+ \to e^+ \gamma) < 4.2 \times 10^ at 90% confidence level, based on data collected in 2009–2013. This improved the MEG limit from the prior MEGA experiment by a factor of about 28.


Apparatus

MEG uses a continuous muon beam (3 × 107/s) incident on a plastic target. The decay is reconstructed to look for a back-to-back positron and monochrom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chirality (physics)
A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry. Chirality and helicity The helicity of a particle is positive (“right-handed”) if the direction of its spin is the same as the direction of its motion. It is negative (“left-handed”) if the directions of spin and motion are opposite. So a standard clock, with its spin vector defined by the rotation of its hands, has left-handed helicity if tossed with its face directed forwards. Mathematically, ''helicity'' is the sign of the projection of the spin vector onto the momentum vector: “left” is negative, “right” is positive. The chira ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Higgs Field
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the excited state, quantum excitation of the Higgs field, one of the field (physics), fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin (physics), spin, even (positive) Parity (physics), parity, no electric charge, and no color charge, colour charge, that Coupling (physics), couples to (interacts with) mass. It is also very unstable, particle decay, decaying into other particles almost immediately. The Higgs field is a scalar field, scalar field (physics), field, with two neutral and two electrically charged components that form a complex doublet (physics), doublet of the weak isospin SU(2) symmetry. Its "Spontaneous symmetry breaking#Mexican hat potential, Mexican hat-shaped" potential leads it to take a nonzero value ''everywhere'' (including otherwise empty space), which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Time Dilation
In physics and relativity, time dilation is the difference in the elapsed time as measured by two clocks. It is either due to a relative velocity between them ( special relativistic "kinetic" time dilation) or to a difference in gravitational potential between their locations ( general relativistic gravitational time dilation). When unspecified, "time dilation" usually refers to the effect due to velocity. After compensating for varying signal delays due to the changing distance between an observer and a moving clock (i.e. Doppler effect), the observer will measure the moving clock as ticking slower than a clock that is at rest in the observer's own reference frame. In addition, a clock that is close to a massive body (and which therefore is at lower gravitational potential) will record less elapsed time than a clock situated further from the said massive body (and which is at a higher gravitational potential). These predictions of the theory of relativity have been repeated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutrino Mass
A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles excluding massless particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected. Weak interactions create neutrinos in one of three leptonic flavors: electron neutrinos muon neutrinos (), or tau neutrinos (), in association with the corresponding charged lepton. Although neutrinos were long believed to be massless, it is now known that there are three discrete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]