Muon Antineutrino
The muon neutrino is an elementary particle which has the symbol () and zero electric charge. Together with the muon it forms the second generation of leptons, hence the name muon neutrino. It was discovered in 1962 by Leon Lederman, Melvin Schwartz and Jack Steinberger. The discovery was rewarded with the 1988 Nobel Prize in Physics. Discovery The muon neutrino or "neutretto" was hypothesized to exist by a number of physicists in the 1940s. The first paper on it may be Shoichi Sakata and Takesi Inoue's two-meson theory of 1942, which also involved two neutrinos. In 1962 Leon M. Lederman, Melvin Schwartz and Jack Steinberger Jack Steinberger (born Hans Jakob Steinberger; May 25, 1921December 12, 2020) was a German-born American physicist noted for his work with neutrinos, the subatomic particles considered to be elementary constituents of matter. He was a recipient ... proved the existence of the muon neutrino in an experiment at the Brookhaven National Laboratory. This ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elementary Particle
In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, antiquarks, and antileptons, which generally are matter particles and antimatter particles), as well as the fundamental bosons ( gauge bosons and the Higgs boson), which generally are force particles that mediate interactions among fermions. A particle containing two or more elementary particles is a composite particle. Ordinary matter is composed of atoms, once presumed to be elementary particles – ''atomos'' meaning "unable to be cut" in Greek – although the atom's existence remained controversial until about 1905, as some leading physicists regarded molecules as mathematical illusions, and matter as ultimately composed of energy. Subatomic constituents of the atom were first identified in the early 1930s; the electron and the proto ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Shoichi Sakata
was a Japanese physicist and Marxist who was internationally known for theoretical work on the subatomic particles.Nussbaum, Louis-Frédéric. (2005). "''Sakata Shōichi''" in ; n.b., Louis-Frédéric is pseudonym of Louis-Frédéric Nussbaum, ''see'Deutsche Nationalbibliothek Authority File. He proposed the two meson theory, the Sakata model (an early precursor to the quark model), and the Pontecorvo–Maki–Nakagawa–Sakata neutrino mixing matrix. After the end of World War II, he joined other physicists in campaigning for the peaceful uses of nuclear power. Life and career Early life and education Sakata was born in Tokyo, Japan on January 18, 1911, to a family that held a tradition of public service. He was the eldest of six children of Tatsue Sakata and . At the time of Sakata's birth, Mikita was secretary to Prime Minister Katsura Tarō, who became Sakata's godfather. While attending Kōnan Middle School in Hyōgo Prefecture in 1924, Sakata was taught by the physicist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electron Neutrino
The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name electron neutrino. It was first hypothesized by Wolfgang Pauli in 1930, to account for missing momentum and missing energy in beta decay, and was discovered in 1956 by a team led by Clyde Cowan and Frederick Reines (see Cowan–Reines neutrino experiment). Proposal In the early 1900s, theories predicted that the electrons resulting from beta decay should have been emitted at a specific energy. However, in 1914, James Chadwick showed that electrons were instead emitted in a continuous spectrum. : → + :The early understanding of beta decay In 1930, Wolfgang Pauli theorized that an undetected particle was carrying away the observed difference between the energy, momentum, and angular momentum of the initial and final particles.Niels Bohr was notably opposed to this interpretation of beta decay ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ICARUS (experiment)
ICARUS (Imaging Cosmic And Rare Underground Signals) is a physics experiment aimed at studying neutrinos. It was located at the Laboratori Nazionali del Gran Sasso (LNGS) where it started operations in 2010. After completion of its operations there, it was refurbished at CERN for re-use at Fermilab, in the same neutrino beam as the MiniBooNE, MicroBooNE and Short Baseline Near Detector (SBND) experiments. The ICARUS detector was then taken apart for transport and reassembled at Fermilab, where data collection is expected to begin in fall 2021. The ICARUS program was initiated by Carlo Rubbia in 1977, who proposed a new type of neutrino detector. These are called Liquid Argon Time Projection Chambers (LAr-TPC), which should combine the advantages of bubble chambers and electronic detectors, evolving previous detectors. They detect neutrinos through the reaction: :^Ar + \nu \rightarrow ^K + e^ \, (a neutrino combining with an atom of argon-40 to yield an atom of potassium-40 and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lightspeed
The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit for the speed at which conventional matter or energy (and thus any signal carrying information) can travel through space. All forms of electromagnetic radiation, including visible light, travel at the speed of light. For many practical purposes, light and other electromagnetic waves will appear to propagate instantaneously, but for long distances and very sensitive measurements, their finite speed has noticeable effects. Starlight viewed on Earth left the stars many years ago, allowing humans to study the history of the universe by viewing distant objects. When communicating with distant space probes, it can take minutes to hours for signals to travel from Earth to the spacecraft and vice versa. In computing, the speed of light fixes the u ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Faster-than-light
Faster-than-light (also FTL, superluminal or supercausal) travel and communication are the conjectural propagation of matter or information faster than the speed of light (). The special theory of relativity implies that only particles with zero rest mass (i.e., photons) may travel ''at'' the speed of light, and that nothing may travel faster. Particles whose speed exceeds that of light (tachyons) have been hypothesized, but their existence would violate causality and would imply time travel. The scientific consensus is that they do not exist. "Apparent" or "effective" FTL, on the other hand, depends on the hypothesis that unusually distorted regions of spacetime might permit matter to reach distant locations in less time than light could in normal ("undistorted") spacetime. As of the 21st century, according to current scientific theories, matter is required to travel at slower-than-light (also STL or subluminal) speed with respect to the locally distorted spacetime region. Appar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
OPERA Experiment
The Oscillation Project with Emulsion-tRacking Apparatus (OPERA) was an instrument used in a scientific experiment for detecting tau neutrinos from muon neutrino oscillations. The experiment is a collaboration between CERN in Geneva, Switzerland, and the Laboratori Nazionali del Gran Sasso (LNGS) in Gran Sasso, Italy and uses the CERN Neutrinos to Gran Sasso (CNGS) neutrino beam. The process started with protons from the Super Proton Synchrotron (SPS) at CERN being fired in pulses at a carbon target to produce pions and kaons. These particles decay to produce muons and neutrinos. The beam from CERN was stopped on 3 December 2012, ending data taking, but the analysis of the collected data has continued. Detector OPERA, in Hall C of the Gran Sasso underground labs, was built in 2003–2008. The taus resulting from the interaction of tau neutrinos are observed in "bricks" of photographic films (nuclear emulsion) interleaved with lead sheets. Each brick weighs 8.3 kg; the t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Nobel Foundation
The Nobel Foundation ( sv, Nobelstiftelsen) is a private institution founded on 29 June 1900 to manage the finances and administration of the Nobel Prizes. The foundation is based on the last will of Alfred Nobel, the inventor of dynamite. It also holds Nobel Symposia on important breakthroughs in science and topics of cultural or social significance. History , born on 21 October 1833 in Stockholm Sweden, was a chemist, engineer, innovator, armaments manufacturer and the inventor of dynamite. He owned Bofors, a major armaments manufacturer, which he had redirected from its original business as an iron and steel mill. Nobel held 355 different patents, dynamite being the most famous. Nobel amassed a sizeable personal fortune during his lifetime, thanks mostly to this invention. In 1896 Nobel died of a stroke in his villa in San Remo, Italy where he had lived his final years.AFP"Alfred Nobel's last will and testament", '' The Local''(5 October 2009): accessed 14 January 20 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Physical Review Letters
''Physical Review Letters'' (''PRL''), established in 1958, is a peer-reviewed, scientific journal that is published 52 times per year by the American Physical Society. As also confirmed by various measurement standards, which include the ''Journal Citation Reports'' impact factor and the journal ''h''-index proposed by Google Scholar, many physicists and other scientists consider ''Physical Review Letters'' to be one of the most prestigious journals in the field of physics. ''According to Google Scholar, PRL is the journal with the 9th journal h-index among all scientific journals'' ''PRL'' is published as a print journal, and is in electronic format, online and CD-ROM. Its focus is rapid dissemination of significant, or notable, results of fundamental research on all topics related to all fields of physics. This is accomplished by rapid publication of short reports, called "Letters". Papers are published and available electronically one article at a time. When published in s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |