Legendre Functions
In physical science and mathematics, the Legendre functions , and associated Legendre functions , , and Legendre functions of the second kind, , are all solutions of Legendre's differential equation. The Legendre polynomials and the associated Legendre polynomials are also solutions of the differential equation in special cases, which, by virtue of being polynomials, have a large number of additional properties, mathematical structure, and applications. For these polynomial solutions, see the separate Wikipedia articles. Legendre's differential equation The general Legendre equation reads \left(1 - x^2\right) y'' - 2xy' + \left lambda(\lambda+1) - \frac\righty = 0, where the numbers and may be complex, and are called the degree and order of the relevant function, respectively. The polynomial solutions when is an integer (denoted ), and are the Legendre polynomials ; and when is an integer (denoted ), and is also an integer with are the associated Legendre polynomials ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Legendre Polynomials
In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications. Closely related to the Legendre polynomials are associated Legendre polynomials, Legendre functions, Legendre functions of the second kind, big q-Legendre polynomials, and associated Legendre functions. Definition and representation Definition by construction as an orthogonal system In this approach, the polynomials are defined as an orthogonal system with respect to the weight function w(x) = 1 over the interval [-1,1]. That is, P_n(x) is a polynomial of degree n, such that \int_^1 P_m(x) P_n(x) \,dx = 0 \quad \text n \ne m. With the additional standardi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associated Legendre Polynomials
In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation \left(1 - x^2\right) \frac P_\ell^m(x) - 2 x \frac P_\ell^m(x) + \left \ell (\ell + 1) - \frac \rightP_\ell^m(x) = 0, or equivalently \frac \left \left(1 - x^2\right) \frac P_\ell^m(x) \right+ \left \ell (\ell + 1) - \frac \rightP_\ell^m(x) = 0, where the indices ''ℓ'' and ''m'' (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively. This equation has nonzero solutions that are nonsingular on only if ''ℓ'' and ''m'' are integers with 0 ≤ ''m'' ≤ ''ℓ'', or with trivially equivalent negative values. When in addition ''m'' is even, the function is a polynomial. When ''m'' is zero and ''ℓ'' integer, these functions are identical to the Legendre polynomials. In general, when ''ℓ'' and ''m'' are integers, the regular solutions are sometimes called "associated Legendre polynomials", even though they are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associated Legendre Poly
*
{{dab ...
Associated may refer to: *Associated, former name of Avon, Contra Costa County, California *Associated Hebrew Schools of Toronto, a school in Canada *Associated Newspapers, former name of DMG Media, a British publishing company See also *Association (other) *Associate (other) Associate may refer to: Academics * Associate degree, a two-year educational degree in the United States, and some areas of Canada * Associate professor, an academic rank at a college or university * Technical associate or Senmonshi, a Japa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hypergeometric Differential Equation
In mathematics, the Gaussian or ordinary hypergeometric function 2''F''1(''a'',''b'';''c'';''z'') is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation. For systematic lists of some of the many thousands of published identities involving the hypergeometric function, see the reference works by and . There is no known system for organizing all of the identities; indeed, there is no known algorithm that can generate all identities; a number of different algorithms are known that generate different series of identities. The theory of the algorithmic discovery of identities remains an active research topic. History The term "hypergeometric series" was first used by John Wallis in his 1655 book ''Arithmetica Infinitor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gamma Function
In mathematics, the gamma function (represented by Γ, capital Greek alphabet, Greek letter gamma) is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function \Gamma(z) is defined for all complex numbers z except non-positive integers, and for every positive integer z=n, \Gamma(n) = (n-1)!\,.The gamma function can be defined via a convergent improper integral for complex numbers with positive real part: \Gamma(z) = \int_0^\infty t^ e^\textt, \ \qquad \Re(z) > 0\,.The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic function, holomorphic except at zero and the negative integers, where it has simple Zeros and poles, poles. The gamma function has no zeros, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential functi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plot Of The Legendre Function Of The Second Kind Q N(x) With N=0
Plot or Plotting may refer to: Art, media and entertainment * Plot (narrative), the connected story elements of a piece of fiction Music * The Plot (album), ''The Plot'' (album), a 1976 album by jazz trumpeter Enrico Rava * The Plot (band), a band formed in 2003 Other * Plot (film), ''Plot'' (film), a 1973 French-Italian film * Plotting (video game), ''Plotting'' (video game), a 1989 Taito puzzle video game, also called Flipull * The Plot (video game), ''The Plot'' (video game), a platform game released in 1988 for the Amstrad CPC and Sinclair Spectrum * Plotting (non-fiction), ''Plotting'' (non-fiction), a 1939 book on writing by Jack Woodford * The Plot (novel), ''The Plot'' (novel), a 2021 mystery by Jean Hanff Korelitz * The Plot (card game), a Patience-type card game * The Plot (film), a 2024 South Korean crime thriller film Graphics * Plot (graphics), a graphical technique for representing a data set * Plot (radar), a graphic display that shows all collated data from a shi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Whipple Formulae
In the theory of special functions Special functions are particular mathematical functions that have more or less established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications. The term is defined by ..., Whipple's transformation for Legendre functions, named after Francis John Welsh Whipple, arise from a general expression, concerning associated Legendre functions. These formulae have been presented previously in terms of a viewpoint aimed at spherical harmonics, now that we view the equations in terms of toroidal coordinates, whole new symmetries of Legendre functions arise. For associated Legendre functions of the first and second kind, :P_^\biggl(\frac\biggr)= \frac and :Q_^\biggl(\frac\biggr)= -i(\pi/2)^\Gamma(-\nu-\mu)(z^2-1)^e^ P_\nu^\mu(z). These expressions are valid for all parameters \nu, \mu, and z. By shifting the complex degree and order in an appropriate fashion, we obtain ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pochhammer Symbol
In mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial \begin (x)_n = x^\underline &= \overbrace^ \\ &= \prod_^n(x-k+1) = \prod_^(x-k) . \end The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, — A reprint of the 1950 edition by Chelsea Publishing. rising sequential product, or upper factorial) is defined as \begin x^ = x^\overline &= \overbrace^ \\ &= \prod_^n(x+k-1) = \prod_^(x+k) . \end The value of each is taken to be 1 (an empty product) when n=0. These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (x)_n, where is a non-negative integer. It may represent ''either'' the rising or the falling factorial, with different articles and authors using different conventions. Pochhammer himself actually used (x)_n with yet another meaning, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Singularity (mathematics)
In mathematics, a singularity is a point at which a given mathematical object is not defined, or a point where the mathematical object ceases to be well-behaved in some particular way, such as by lacking differentiability or analyticity. For example, the reciprocal function f(x) = 1/x has a singularity at x = 0, where the value of the function is not defined, as involving a division by zero. The absolute value function g(x) = , x, also has a singularity at x = 0, since it is not differentiable there. The algebraic curve defined by \left\ in the (x, y) coordinate system has a singularity (called a cusp) at (0, 0). For singularities in algebraic geometry, see singular point of an algebraic variety. For singularities in differential geometry, see singularity theory. Real analysis In real analysis, singularities are either discontinuities, or discontinuities of the derivative (sometimes also discontinuities of higher order derivatives). There are four kinds of discontinuities: ty ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homogeneous Space
In mathematics, a homogeneous space is, very informally, a space that looks the same everywhere, as you move through it, with movement given by the action of a group. Homogeneous spaces occur in the theories of Lie groups, algebraic groups and topological groups. More precisely, a homogeneous space for a group ''G'' is a non-empty manifold or topological space ''X'' on which ''G'' acts transitively. The elements of ''G'' are called the symmetries of ''X''. A special case of this is when the group ''G'' in question is the automorphism group of the space ''X'' – here "automorphism group" can mean isometry group, diffeomorphism group, or homeomorphism group. In this case, ''X'' is homogeneous if intuitively ''X'' looks locally the same at each point, either in the sense of isometry (rigid geometry), diffeomorphism (differential geometry), or homeomorphism (topology). Some authors insist that the action of ''G'' be faithful (non-identity elements act non-trivially), althou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |